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Abstract 

Chronic pain is known to alter the brain’s network dynamics. These dynamics are often 

demonstrated by identifying alterations in the brain network topology. A common approach 

used for this purpose is graph theory. To date, little is known on how these potentially altered 

networks in chronic pain relate to the symptoms reported by these patients. Here, we applied a 

graph theoretical approach to identify network changes in patients suffering from chronic 

neck pain, a group that is often neglected in chronic pain research. Participants with chronic 

traumatic and non-traumatic neck pain were compared to healthy pain-free controls. They 

showed higher levels of self-reported symptoms of sensitization, higher levels of disability 

and impaired sensorimotor control. The brain suffering from chronic neck pain furthermore 

showed altered network properties in the posterior cingulate cortex, amygdala and pallidum 

compared to the healthy pain-free brain. These regions have been identified as brain hubs (i.e. 

regions that are responsible for orchestrating communication between other brain regions) and 

are therefore known to be more vulnerable in brain disorders including chronic pain. We were 

furthermore able to uncover associations between these altered brain network properties and 

the symptoms reported by patients. Our findings indicate that chronic neck pain patients 

reflect brain network alterations and that targeting the brain in patients might be of utmost 

importance. 

 

Keywords: Whiplash; chronic neck pain; idiopathic neck pain; Graph Theory; Hub Disruption 

Index (HDI); Network topology; Connectomics 

 

Chronic neck pain has been nominated as the 6th leading cause of disability among 

people world-wide [90]. Chronic neck pain can be subdivided in traumatic (whiplash 

associated disorders; WAD) and non-specific non-traumatic neck pain (idiopathic neck pain; 
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INP) [35]. Both are associated with pain, and impaired motor control, but as WAD originates 

from a trauma, they are characterized by more severe impairments compared to INP 

[25,56,63,68,71]. Patients with WAD suffer for example from general hypersensitivity of the 

central nervous system [56,67], a symptom attributed to altered brain dynamics [18]. 

Consequently, during the further unraveling of the pathophysiological processes underlying 

these pain disorders, the brain has been nominated as a primary target. Unfortunately, the 

representation of pain in the brain tends to be complex and dynamic by nature [23,27,51,52], 

which makes inference on this matter challenging. 

Previous studies in chronic musculoskeletal pain have particularly focused on 

functional connectivity within the pain neuromatrix, a set of regions known to be involved in 

the sensation of pain [30,91]. These initial studies involved narrow region of interest (ROI)-

based approaches [16,49], although many of these regions also participate in functions beyond 

pain processing [27,87]. Recent advances have indeed identified the involvement of regions 

outside the pain matrix in numerous pain disorders [8], further necessitating the examination 

of the brain as a whole [27]. To this end, the brain can be conceptualized as a network 

constituted of densely connected regions (often called network nodes) with reciprocal 

information flow between these nodes  [27,36,52]. Graph theory provides a theoretical 

framework to examine these  complex networks, and might reveal information about the local 

and global organization of functional networks [15,37,76]. A handful of studies have tried to 

explore these functional brain networks in chronic musculoskeletal pain [7,17,58,59,97], of 

which none in chronic neck pain. Furthermore, only a minority has assessed the association 

between topological alterations and self-reported symptoms of pain [17,59,97], although there 

are reasons to assume a relationship between the patient’s clinical presentation, including pain 

and sensorimotor symptoms, and the topology of the patient’s brain network [41,42].  
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Although, local network alterations were identified as essential indicators embodying 

chronic musculoskeletal pain in the brain, these measures are unfortunately inherently data-

rich and complex, which might hinder the identification of robust network changes [57]. The 

hub disruption index (HDI) was therefore introduced recently as a reliable and sensitive 

global graph measure that reflects nodal differences within a graph [2,86]. 

Here, using a GT approach, our goals were to (1) quantify difference in global network 

measures between INP, WAD and healthy pain-free controls (HC), using the novel HDI 

metric, and (2) assess the associations between potential network disruptions and clinical 

symptoms including motor impairment and self-reported symptoms of pain.  Based on 

previous findings of changes in brain network organization in chronic musculoskeletal pain 

[58,59], we hypothesized that (1) local topological alterations are present on a global scale in 

patients with INP and WAD, and that (2) the degree of these alterations is associated with the 

degree of motor impairment and self-reported pain. 

 

METHODS 

I. Participants 

This study involves participants that have taken part in a previously published study 

on brain morphology [69]. In total, 35 HC, 39 patients with INP and 37 patients with WAD 

were included in the present study. All participants (n = 110) were female, Dutch native 

speakers aged between 18 and 65 years, who were recruited via internet, flyers and posters. 

Inclusion criteria for patients with WAD and INP were persistent neck pain (> 3 months) with 

an average pain intensity of more than 3/10 on the Verbal Numeric Rating Scale (VNRS), 

mild/moderate to severe pain-related disability (≥ 10/50 on the Neck Disability Index (NDI)) 

[89], and stability of pain medication for at least 4 weeks prior to study participation. Patients 
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with CWAD were only included if they were classifiable as WAD II A, B or C according to 

the modified Quebec Task Force Scale [81,84], and if they did not report loss of 

consciousness during or after the trauma to exclude possible mild traumatic brain injury. 

Healthy pain-free women (HC) were included if they met the following inclusion criteria: (i) 

pain-free on the test day (VNRS < 2/10), had no history of neck-shoulder-arm pain for more 

than 8 consecutive days during the last year (average VNRS ≥ 2/10), a score of less than 8 out 

of 50 on the NDI, no medical consultation for neck-shoulder-arm pain during the last year and 

no history of a whiplash trauma.  

General exclusion criteria for all participants were psychiatric illness, neurologic, 

metabolic, cardiovascular disorders, inflammatory conditions, fibromyalgia, chronic fatigue 

syndrome, and a history of neck or shoulder girdle surgery. Furthermore, pregnant women 

and women 1 year postnatal were excluded. All participants were asked to stop intake of non-

opioid analgesics 48 hours prior to study participation. In addition, participants were asked 

not to undertake heavy physical exertion, and to refrain from consuming alcohol, caffeine and 

nicotine on the day of testing. Ethical clearance was received from the Ghent University 

Hospital ethical committee under registration number EC/2013/1053. Written informed 

consent was obtained from each participant prior to participation. 

 

II. Clinical assessment 

Self-reported pain, sensitization, and disability measures 

Participants scored their neck pain intensity on a VNRS, a usable and valid pain rating 

scale [40], with scores ranging from 0 to 10, with 0 reflecting ‘no pain’ and 10 reflecting ‘the 

worst pain imaginable’. Self-reported disability was assessed with the Dutch version of the 

NDI [89], which has demonstrated high reliability and validity [4,46]. The scale includes 10 
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items: pain intensity, personal care, lifting, reading, headache, concentration, work, driving, 

sleeping, and recreation, whereby each of item has 6 response categories ranging from 0 to 5 

(with 0 “no disability” and 5 “excessive disability”), resulting in a total score ranging up to 

50. Higher scores indicate increased self-reported disability [89]. Finally, participants 

completed the Dutch version of the Central Sensitization Inventory (CSI), a reliable self-

report screening instrument to measure clinical symptoms of central sensitization in chronic 

pain populations [50,61]. Higher CSI scores denote a higher degree of central sensitization 

symptoms. 

Motor control 

Maximal strength (Newton, N) was measured using a Hand-held dynamometer 

(MicroFET 2, Hoggan Health Industries Inc., Biometrics, The Netherlands), an apparatus with 

good reliability [85]. The subject was seated with the thorax stabilized. The hand-held 

dynamometer was placed on the forehead (frontal bone), the occiput, and just above the left 

and right ear (parietal bone) for respectively flexion, extension, and left and right side 

bending. The maximum of three consecutive trials with a 10 seconds rest-interval was 

retained. 

Postural control was assessed with an AMTI ACG portable forceplate (50 cm x 50 cm) 

(Advanced Medical Technology, Inc., Watertown, MA). Participants were standing on a firm 

surface, feet placed at hip width, and eyes closed to measure postural control under high 

sensory load. CoP-data was acquired via three consecutive measurements of 90 seconds using 

a sampling frequency of 100 Hz in order to obtain reliable results [78]. Using MATLAB 

R2015a (Mathworks, Inc), the raw data were filtered using a 4th order low pass digital 

Butterworth filter with a cut-off frequency of 5 Hz. Changes in displacement of the Center of 

Pressure (CoP) were recorded and the following CoP parameters were computed: mean sway 
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velocity (cm/s), and sway area as the 95% confidence ellipse area (cm²). An increased sway 

area reflects worse postural control. 

Neuromuscular control, which reflects the capability to contract a specific muscle, was 

assessed with the craniocervical flexion test (CCFT) and the scapular holding test (SHT). The 

CCFT has been shown to be valid [26] and reliable [94] method. Information on the validity 

and reliability of the SHT is not yet available. Both tests consist of a form with specific 

criteria on neuromuscular control, movement control and endurance. This results in a score 

ranging from 0 to 10 with a lower score indicating worse neuromuscular control (for details, 

see Appendix A, available as supplemental digital content at 

http://links.lww.com/PAIN/A918).  

Based on the scores for strength and neuromuscular control a scaled average was 

computed to provide an overall indication of strength and neuromuscular control. A higher 

score reflects a higher strength or a better performance in neuromuscular control. 

 

III. Neuro-imaging 

MRI data acquisition 

A Siemens 3T TimTrio scanner (located at Gifmi, Ghent University Hospital, Ghent, 

Belgium) and a standard 32-channel head coil was used for MRI data acquisition. High-

resolution whole-brain T1-weighted anatomical scans were obtained with a 3D-T1 MPRAGE 

sequence with following parameters, voxel size = 1.00 x 1.00 x 1.00 mm, repetition time (TR) 

= 2250 ms, echo time (TE) = 4.18 ms, flip angle = 3°, 176 coronal slices, FoV-matrix = 256 x 

256 mm, acquisition time (TA) = 5.14 min. High-resolution whole-brain T2*-weighted 

images (voxel size of 1.00 x 0.70 x 3.00 mm, TR of 839 ms, TE of 18.6 ms, flip angle of 20°, 

33 transversal slices, FoV of 230 x 230 x 230 mm, and a TA of 3.48 min) were obtained to 
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assess potential micro-haemorrhages by an experienced neuroradiologist.  No participants 

were identified with micro-haemorrhage and none were therefore excluded from further 

analyses. Finally, resting state fMRI was administered using a T2*-weighted EPI sequence 

with the following instruction: “Close your eyes, do not think about anything in particular, 

and do not fall asleep”, and with the following parameters: TR = 2000ms, TE = 29ms, flip 

angle = 90°, number of slices = 40, slice thickness = 3.0 mm, FoV read = 192 mm x  192 mm, 

Bandwidth BW = 2694 Hz, and 300 volumes, and TA=10.12 min. None of the patients 

reported falling asleep during the resting state fMRI scanning procedure. 

Analysis of brain imaging data 

High resolution T1 data preprocessing 

High-resolution T1-weighted scans were processed using FreeSurfer version 5.3.0  

(http://surfer.nmr.mgh.harvard.edu) T1-using the default processing pipeline, which includes 

intensity normalization, skull stripping, removal of non-brain tissue, brain mask generation, 

cortical reconstruction, segmentation of subcortical white matter and deep gray matter 

volumetric structures, cortical tessellation of the gray matter/white matter and gray matter/pial 

boundary, construction of a probabilistic atlas based cortical parcellation into 68 regions 

according to gyral and sulcal structure, and segmentation of deep gray matter structures into 

16 subcortical regions summing to a total of 84 ROIs [24,28]. All FreeSurfer output was 

visually inspected, and in case of surface-deformation, the subject was excluded for further 

analyses. We did not perform any corrections to the FreeSurfer segmentation [62]. A listed 

overview of the different regions together with the average and standard deviation estimates 

of the brain volume in the different segments can be found in Appendix B  (available as 

supplemental digital content at http://links.lww.com/PAIN/A918). 
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Resting-state fMRI data preprocessing 

Preprocessing of each subject’s functional MRI data was performed using the FMRIB 

Software Library v5.0 (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki [95]) and AFNI [20]. In 

particular, preprocessing encompassed the following steps: skull extraction using BET, 

motion correction, slice time correction, temporal filtering with a band-pass frequency range 

from 0.009 Hz to 0.08 Hz, and detrending of the signal by removal of linear and quadratic 

trends. Functional images were then coregistered to the individual’s structural space and 

normalized to the MNI standard template using the linear and non-linear registration 

algorithms provided by FSL (FLIRT and FNIRT [5,44,45,95]). Next, segmentation of the 

anatomical data was performed using FAST [96] and covariates, consisting of six head 

motion parameters, the white matter signal and cerebrospinal fluid signal, were regressed out 

of the fMRI signal. Of note, we did not perform smoothing for the following reasons: (i) noise 

suppression was already taken into account during the averaging step (see below); (ii) to 

avoid a shift in ROI consistencies [48] . As an additional quality parameter, the framewise 

displacement was calculated to evaluate the head motion during the scanning time [72,73]. 

Next, the FreeSurfer cortical parcellation obtained in the previous step was mapped to the 

subject’s functional space. Specifically, fMRI images were linearly registered to the subject’s 

raw high-resolution T1-weighted images using the epi_reg function of FSL FLIRT [44,45]. 

Then, the inverse of this transformation matrix was applied to transform the FreeSurfer 

parcellation scheme into the subject’s functional space. Average BOLD signal time series for 

each region were then generated by computing the spatial mean for all voxel time-series of 

each region. Lastly, connectivity matrices were constructed by calculating the Fisher z-

transformed Pearson correlation coefficient between all pairs of regions. The same procedure 

was repeated for the Automated Anatomical Labeling (AAL)-atlas [88] to evaluate the 

robustness of our analysis. 
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Graph theoretical analysis 

Graph construction 

Individual functional brain networks, i.e. graphs, were constructed using the 84 

regions of the FreeSurfer parcellation scheme as nodes and region-wise functional 

connectivity between each pair of nodes as edges. To define a graph, each connectivity matrix 

was thresholded to create an adjacency matrix where each element is either 1 if the value of 

the correlation is greater than a given threshold or 0 otherwise. Since the value of this 

threshold is crucial to define the graph density (i. e. the amount of edges in graphs over the 

total amount of possible edges) [93], each graph was thresholded at different threshold. These 

thresholds were particularly chosen to avoid unreliability of graph metrics and the presence of 

disconnected networks when the network is too sparse (< 30%) [86] and to avoid biological 

implausible networks that are too dense (> 70%) [47,74]. Graph characteristics were therefore 

computed for all individual brain networks at various network densities ranging from 30% to 

70% with density steps of 10%. In addition to the individual networks, 100 random graphs 

were constructed with the same number of nodes and edges to serve as a baseline for 

comparison. All graphs were constructed with the Brain Connectivity Toolbox (BCT) [77]. 

Characterization of the network: global and nodal graph measures 

Based on the connectivity matrix, topological properties can be examined by graph 

metrics provided by the framework of graph theory. These metrics can be categorized into 

measures covering segregation (i.e. the ability for specialized processing to occur within 

densely interconnected groups of regions), integration (i.e. the capacity of the network to 

rapidly combine specialized information from distributed regions), and centrality (i.e. the 

importance of network brain regions to the global network functioning) [77]. In particular, we 

computed clustering coefficient (a measure for segregation), and global efficiency (a measure 
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for integration) to infer on the global network properties. Small-worldness, a key common 

feature of complex network structures [83,92], was additionally calculated as the tradeoff 

between network segregation and integration [43]. A value for small-worldness that is greater 

than 1 is believed to reflect an optimal balance between segregation and integration [1].  

Besides global graph measures, clustering coefficient, degree and betweenness centrality 

(measures for centrality) were computed at the nodal level. For more details on the definitions 

of graph metrics, the interested reader is referred to Rubinov and Sporns (2019) [76]. All 

aforementioned and hereafter presented graph measures were estimated with the BCT [77]. 

Characterization of the network: modular organization 

The modular structure of a network can be revealed by subdividing the network into 

modules by maximizing the number of within-group links and minimizing the number of 

between-group links [31,34]. The modularity statistic quantifies the degree to which the 

network may be subdivided into such clearly delineated modules [13]. This statistic was 

identified through modularity maximization across 100 iterations, and as an additional check, 

the stability of this modular decomposition was calculated across 100 iterations per subject. In 

particular, we calculated (per subject) how often any 2 nodes were grouped within the same 

module. Then, we computed the average stability across all nodes. Results showed relatively 

high stability (average across subjects = 68 %, SD = 15 %). Finally, based on the modularity 

structure of the network, the intra-modular degree and participation coefficient were 

calculated. 

Characterization of the network: hubs 

Of particular interest are nodes that play a central role in the organization of this 

complex network [82]. These nodes are identified as brain hubs, and are believed to feature 

high centrality measures, including betweenness centrality [38,82]. The examination of these 
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nodes is of special interest as they are involved in establishing and maintaining efficient 

communication, a key feature of the healthy human brain [12,39]. In a community-structured 

network, a similar reasoning was followed for the identification of hubs. Modular hubs can 

either be provincial hubs or connector hubs. Provincial hubs provide efficient communication 

within a subnetwork and are characterized by a low participation coefficient (i.e. a relatively 

low inter-module connectivity compared to its intra-module connectivity). Connector hubs 

provide connection of different modules in the network and are characterized by a high 

participation coefficient (i.e. a relatively high inter-module connectivity compared to its intra-

module connectivity) [38,82]. Of note, the participation coefficient, module degree, and 

modularity were calculated using the same modular decomposition. Considering these 

definitions, hubs were classified into provincial hubs and connector hubs based on a 

participation coefficient respectively lower than the 15th quartile or higher than the 85th 

quantile. To study a change in hub properties, the mean differences in betweenness centrality, 

module degree and participation coefficient were calculated between each group for each hub 

in the network (patients with WAD versus HC, patients with INP versus HC, and patients 

with WAD versus INP). Hubs displaying an absolute between group difference greater than 

two standard deviations were identified as disrupted hubs.  

Characterization of the network changes: Hub Disruption Index 

Lastly, to overcome the shortcoming of traditional global network metrics, we 

computed the Hub Disruption Index (HDI, κ), a global index sensitive to the differences of 

nodes within a graph [86]. The HDI yields an estimate for the magnitude of differences 

between a group of interest or an individual patient and a reference (e.g. the average value in 

pain-free healthy controls) for a particular nodal graph measure. Specifically, the HDI of a 

subject corresponds to the slope of a linear regression line between the mean local network 

measure of a reference group as dependent variable (i.e the healthy pain-free controls) and the 
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difference between that reference group and the subject/group under study as independent 

variable. In line with other graph metrics, the HDI was calculated for degree, clustering 

coefficient, betweenness centrality, participation coefficient, and module degree at network 

densities ranging from 30% to 70% [2,86]. 

Statistical analysis 

Normality and equality of variance of all variables within each group was formally 

assessed with Shapiro-Wilk and Levene’s tests, respectively, and visually inspected with QQ-

plots and histograms. When normality and equality of variance could be assumed in each 

group, group differences of demographic and clinical variables were estimated using an 

ANCOVA model with age as a covariate, because of its between-group significance. In case 

of non-Gaussian distributed data, data was log-transformed in an attempt to achieve normality 

and equality of variance. Variables on medication use were evaluated by a Chi-square test at α 

= 0.05, and reported exact P-values were calculated based on a Monte-Carlo simulation. 

Graph measures were analyzed by estimating a random-intercept model (REML) with group 

as fixed variable of interest, and age as fixed variables of no interest. A random-intercept 

model was applied to model the observations across multiple graph densities within one 

subject (graph density of 30%, 40%, 50%, and 60%). The best fitting model was selected 

based on the AIC and a Likelihood Ratio Test between models. Significant group effects were 

evaluated by a permutation test consisting of 1000 permutations [54]. Pairwise post-hoc 

Tukey-HSD adjusted comparisons were performed in case of a significant group effect, 

supplemented with permutation-based P-values of the pairwise comparisons. were adjusted 

comparisons Similarly, associations between clinical variables and graph metrics were 

analyzed by building a random-intercept model with age and the clinical variable of interest 

as fixed factors. Group-specific association were assessed by the significance of the 

interaction group*variable. Interactions were only kept in the model in case of a significant 
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contribution of the interaction to the model’s likelihood. Lastly, the R2 of the model was 

calculated following the Nakagawa and Schielzeth approach [53,64]. All statistical analyses 

were carried out with R[75] (version 3.4.3) at a significance level of α = 0.05.  

RESULTS 

Demographics and self-reported symptoms 

As shown table 1, the F-test for between group-differences was significant for age, but 

only patients with WAD were on average 7.2 (±3.6) years older compared to HC. For pain 

duration, no significant difference was observed between patient-subgroups. Patients with 

INP reported higher amounts of disability and symptoms of central sensitization compared to 

HC. Patients with WAD reported significantly higher pain intensity compared to patients with 

INP, and higher amounts of self-reported disability and self-reported symptoms of central 

sensitization compared to HC and patients with INP. For pain medication intake, between-

group differences were observed for regular intake of NSAIDs and paracetamol, and not for 

the intake of opioid medication. However, participants were asked to refrain from the intake 

of non-opioid medication 48 hours prior to testing. Full demographic and clinical details can 

be consulted in table 2A and 2B. 

Motor performance 

As can be seen in table 1, patients with INP only performed worse on neuromuscular 

control compared to HC. Patients with WAD performed worse on neuromuscular control, 

strength, sway area, and sway balance compared to HC, and showed a smaller amount of 

strength compared to patients with INP. No differences were identified between patient-

subgroups for neuromuscular control, sway area and sway velocity, neither did we identify 

differences between patients with INP and HC for strength, sway area and sway velocity. 
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Quality assessment of rsfMRI 

The average (SD) framewise displacement per group was estimated to be 0.08 (0.042) 

for HC, 0.11 (0.051) for INP and 0.10 (0.050) for WAD. There were no significant between-

group differences (F = 1.795; P = 0.171), indicating that patients with WAD or INP did not 

move significantly more or less compared to HC. 

Graph measures 

Characterization of the network: traditional global graph measures 

As depicted in figure 1, no significant differences were found between groups in terms 

of clustering coefficient, global efficiency, modularity or small-worldness across all graph 

densities. Noticeably, all groups showed small-world characteristics with values for small-

worldness higher than 1. Global network characteristics thus do not appear to be different 

between chronic neck pain patients and healthy controls. 

Characterization of the network changes: Hub Disruption Index 

Figure 2 represents the estimates of the group-based HDI for betweenness centrality, 

clustering coefficient, degree, module degree, and participation coefficient, and their 

respective 95% confidence intervals. The HDI was calculated by taking the average value of 

the respective nodal graph measures in the HC as reference. Nodal graph measures in the 

group under study are considered to be different from the reference group if the HDI 

significantly differs from zero (i.e. the reference line). Patients diagnosed with INP or WAD 

showed on average a significantly negative value for the HDI of betweenness centrality 

compared to HC across all graph densities, indicating that regions that have a high degree of 

betweenness centrality in HCs have a low degree of betweenness centrality in patients and 

vice versa. Similarly, a significantly negative value for the HDI of module degree in patients 

compared to HC across all graph densities. In contrast, patients showed a higher value for the 
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HDI of degree and clustering coefficient for densities above 0.5 and densities between 0.4 and 

0.6, respectively. Only patients who were diagnosed with INP showed a positive value for the 

HDI of participation coefficient. A visual example of the HDI for all graph measures at a 

density of 0.5 is given in figure 3. If the reference group of healthy controls is considered 

typical in the population, then a negative value for an HDI (e.g. degree) in a subject 

corresponds with higher values of the HDI at typically low value nodes and a lower value at 

typically high value nodes. 

Table 3 shows the results of subject-specific HDIs for each group for degree, 

clustering coefficient, betweenness centrality, participation coefficient, and intra-modular 

degree (i.e. the HDI was calculated for each subject with the HC as reference group). Patients 

with INP showed a significantly lower HDI of module-degree compared to HC, but not 

compared to WAD. Similarly, patients with WAD showed a significantly more negative HDI 

of betweenness centrality and intra-modular degree compared to HC, but not to INP (post-hoc 

Tukey HSD corrected). No difference was observed for the HDI of betweenness centrality 

between patients with INP and HC. Unlike betweenness centrality and intra-modular degree, 

no significant group effects were observed for the HDI of participation coefficient, clustering 

coefficient or degree. Interestingly, we were able to identify similar findings when using the 

AAL-atlas as a parcellation scheme to construct the different networks. The results regarding 

the traditional global graph metrics and the HDI-metric can be consulted in Appendix C 

(available as supplemental digital content at http://links.lww.com/PAIN/A918). 

Characterization of the network: hubs 

 Cortical areas were predominantly identified as connector hubs (e.g. bilateral superior 

temporal gyrus, left superior frontal gyrus, left posterior cingulate gyrus), and subcortical 

areas as provincial hubs (e.g. bilateral Pallidum, and bilateral amygdala). Table 4 displays 

these connector and provincial hubs identified in the reference network of HC. Only regions 
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that were identified consistently across all 5 densities were retained. Nodal between group 

differences in betweenness centrality and modular degree were assessed since only for these 

graph metrics the HDI showed significant between-group differences. Hubs that showed a 

consistent difference greater than 2 SD were identified as disrupted hubs (i.e. hubs that were 

identified across 3 or more graph densities). The left posterior cingulate showed a lower 

betweenness centrality in patients with WAD compared to HC. This indicates that in patients 

with WAD fewer nodes have connections to other nodes that pass via the left posterior 

cingulate, i.e. the left posterior cingulate may have a less prominent role in patients with 

WAD. Contrarily, brains of patients with WAD and INP showed a higher intramodular degree 

in the right Amygdala and left Pallidum compared to HC, indicating an increase in the 

subnetwork importance of these regions. Lastly, the right temporal pole showed only an 

increase in intra-modular degree in brain of patients with WAD compared to HC. No 

differences were observed between patient-subgroups. 

Associations of the HDI with clinical parameters 

As can be seen from table 5, a negative association was found between the HDI of 

betweenness centrality and both self-reported disability and self-reported symptoms of central 

sensitization. A more negative HDI for betweenness centrality, which reflects higher nodal 

changes of the subject’s network compared to the reference network, coincides with higher 

values of self-reported disability and symptoms of central sensitization. A similar association 

was observed between the HDI for modular degree, where a more negative HDI for 

intramodular degree coincides with higher values of self-reported disability and symptoms of 

central sensitization, and lower performance on neuromuscular control. No group-specific 

associations were identified, nor did we identify associations between betweenness centrality 

or intra-modular degree and other clinical variables.  
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DISCUSSION 

We questioned if difference in brain network topology exist between the healthy pain-

free brain and the brain under chronic neck pain. Therefore, we applied the novel HDI metric 

to identify brain network alterations and associated these changes with self-reported 

symptoms and signs of motor impairment. Our key findings were (1) the most prominent 

network topology changes are in centrality properties including intra-modular degree and 

betweenness centrality, (2) the hubs of the brain that are mostly affected in a brain suffering 

pain include the post cingulate cortex, amygdala and pallidum, (3) the variability in network 

topology measures for centrality properties can be partly explained by self-reported systems 

of central sensitization, self-perceived disability and neuromuscular control. To our 

knowledge, this study is the first to demonstrate nodal differences of brain network topology 

in patients with chronic neck pain using the novel HDI metric and find associations with self-

reported symptoms and neuromuscular control. 

Self-reported symptoms and motor performance 

We were able to observe similar between-group differences compared to previously 

published research regarding self-reported symptoms [56,79] and motor impairment 

[25,63,80] in patients with chronic neck pain. Patients with WAD show a high variability in 

symptoms [84] which might be a result from the traumatic event that originates WAD [19,71]. 

The symptoms in WAD are furthermore similar to those reported by patients with mild 

traumatic brain injury [19,22], which has led to the hypothesis of more extreme brain 

alterations in patients with WAD compared to INP. However, previous studies were unable to 

reveal micro-hemorrhages [70], nor is there strong evidence for the presence of 

microstructural white matter alterations in patients with WAD [19]. The underlying 

pathophysiology remains thus partly enigmatic. 
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Graph metrics 

We observed no group-differences for traditional global graph measures, which 

suggests a similar – averaged - global network topology in patients with chronic neck pain 

compared to HC on the level of clustering coefficient, global efficiency, small-worldness, and 

modularity. These findings are consistent with previously published research in other chronic 

pain disorders [7,59,97]. In the presence of chronic pain, the pattern and the number of links 

between brain regions shifts, which might indicate a local reorganization of the network 

topology inside the brain based on the observed differences [27]. Computing averages might 

fade out the changes in local differences [57]. Unlike naively calculating averages of nodal 

graph metrics, the HDI is able reflect nodal topological differences of graph measures in a 

reliable fashion [86]. Based on this novel metric, we were able to demonstrate consistent local 

group-based network topology differences (i.e. across all network densities) for betweenness 

centrality and intra-modular degree. These observed group differences are extendable to 

subject-specific disruptions in the HDI of betweenness centrality, specifically in patients with 

chronic traumatic neck pain, and subject-specific disruptions in the HDI of intra-modular 

degree in all chronic neck pain patients. Interestingly, the shift in nodal network topology 

seems to be mainly reflected in nodal measures for centrality properties, including 

betweenness centrality and intra-modular degree. In contrast, no consistent changes were 

identified in nodal integration, nor nodal segregation in the current study. Indeed, brain 

topology alterations have predominantly been identified in the centrality properties of 

different brain disorders [3,21]. Brain hubs express high levels of such central properties and 

are typically more vulnerable. Therefore, they should be regarded as key-nodes in all brain 

disorders, including chronic pain. The identification of these so-called brain hubs is similar to 

previously described methods [7,38,82]. By analyzing these hubs, we were able to detect 

differences for betweenness centrality between healthy controls and patients with WAD for 
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the left Posterior cingulate gyrus. This might indicate a less prominent role for directing 

communication between different brain regions in WAD. The posterior cingulate cortex is 

known to be involved in pain by being part of the default mode network (DMN) [17,29], a 

network that is crucial in mind wandering away from pain [51,52]. Indeed, acute pain 

sensation seems to correlate negatively with the activation pattern of the posterior cingulate 

gyrus [91]. This result partly coincides with the results from the study conducted by Baliki et 

al. 2014, in which a fragmentation of the DMN was shown across different pain conditions 

[10]. In contrast, the Amygdala and Pallidum express  higher levels of intra-modular degree 

was found in both chronic neck pain patient-subgroups. Both regions have emerged as 

important centers for the emotional-affective dimension of pain and pain modulation [65,66]. 

They are furthermore particularly well situated to mediate interactions between pain and 

pleasure [14,55]. Functional alterations in the amygdala and posterior cingulate cortex have 

already been reported in a similar musculoskeletal chronic pain disorder (i.e. chronic low back 

pain) [9], while changes to the pallidum are not directly evident in chronic musculoskeletal 

pain. Considering the complexity and dimensionality of pain, it is not surprising that some 

brain alterations are disorder-specific, inducing a distinct set of regions that might be affected 

in distinct chronic pain disorders [11,27]. Interestingly, the HDI has also been successfully 

applied in conditions outside the chronic pain framework, such as in stroke and comatose 

patients [2,86], where it was correlated with a variety of clinical measures. Therefore, the HDI 

measure is not specific to chronic pain, but might serve as a general measure for brain 

pathology. 

Associations of the HDI with clinical parameters 

Here, we identified an association between the subject-specific HDI for betweenness 

centrality and self-reported disability and self-reported symptoms of central sensitization. 

More specifically, a greater shift in nodal network topology in comparison to the reference 
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“pain-free” network is associated with higher self-reported symptoms of central sensitization 

and disability. This is consistent with earlier studies that assessed the association between 

brain network properties and clinical variables of pain [17,59,97].  Given that the HDI of 

betweenness centrality only differed between patients with WAD and HC, one can argue that 

only in patients with more severe symptoms a clear difference in network topology is 

detectable. More severe pain symptoms often relate to hyper-responsiveness of the central 

nervous system often called central sensitization, a state that has only been identified in WAD 

and not in INP [56,67]. Unlike the HDI of betweenness centrality, the HDI of intra-modular 

degree not only showed associations with disability and central sensitization, but also with 

neuromuscular control. Topological alterations in intramodular degree furthermore occurred 

in both patient-subgroups. The link between pain and neuromuscular control might occur in 

the brain, where altered brain  dynamics caused by pain, could induce an altered 

neuromuscular control strategy [42]. These changes in intramodular degree were furthermore 

observed more clearly in the pallidum and amygdala, regions that are both (in)directly 

involved in the selection-process of the most appropriate motor response [32,33]. Targeting 

the brain in the treatment of patients with chronic pain might not only diminish self-reported 

disability and symptoms of central sensitization, but might also improve motor control by 

normalizing neuromuscular control.  

Strengths and limitations 

 This study included a large sample of participants and is the first to report functional 

network changes in patients with chronic non-specific neck pain. The methodology used in 

this paper follows the recommended guidelines reported by different methodological papers, 

including a proper preprocessing pipeline [6],  and applying a subject-specific cortical 

parcellation scheme in contrast to a general segmentation scheme. Furthermore, the calculated 

traditional and novel global network topology characteristics together with their association 
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with self-reported disability, symptoms of central sensitization and motor performance were 

analyzed at different graph densities. Some limitations are however inherent to this paper: we 

were unable to formally prove differences in graph properties at the nodal level, the clinical 

interpretation of the HDI remains complex, and direct inference on this network measure is 

harsh. The graph theoretical approach only covers one piece of the underlying puzzle in the 

brain disorder that entails chronic pain. Future studies might as well focus on other aspects of 

network topology. Lastly, based on the current analysis, we were unable to infer on the causal 

relationship between brain topology and disability, sensitization and motor impairment. 

Longitudinal studies should explore causality and assess the predictability of chronic pain 

based on brain network topology, since the cross-sectional design restricts the inference on 

causal relationships between the HDI and chronic pain. Choosing appropriate regions of 

interest, including a large sample size, and construction of graph at different network densities 

is of utmost importance for the stability of calculated graph measures [60]. Although the 

results between the FreeSurfer- and AAL-atlas were in general overlapping, there are some 

minor differences. Therefore, future studies should empower our current findings by running 

a similar analysis on a different sample of patients. These studies should as well consider 

including more objective measures to evaluate pain. In addition, future research should 

evaluate the network properties of different subnetworks in addition to the global network 

based on a parcellation scheme that includes a larger number of brain regions. 

Conclusions 

 We identified local changes in network topology of the brain in chronic neck pain 

patients. More specifically, these changes occur in local centrality properties, indicating 

differences in the functioning of so-called brain hubs. These changes furthermore correlate 

with levels of self-reported central sensitization, self-reported disability, and neuromuscular 

control. A larger difference in central network properties is reflected by increased symptoms 
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and greater impairments in neuromuscular control. Targeting the brain in the therapy of 

patients with chronic neck pain might be crucial in the healing-process of chronic pain. 
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FIGURES 

Figure 1: Between group comparisons of global graph measures across different graph 

densities (30% to 70%).  

 

Figure 2: (a) Changes in HDI (κ) of patients with INP and WAD compared to pain free 

individuals (reference line: y = 0) across different graph densities (30% to 70%). The error 

bars represent the 95% CI around the estimated mean. Abbreviations: HC: healthy controls; 

INP: idiopathic neck pain; WAD: whiplash-associated disorder; κ: Hub Disruption Index 

(HDI). 
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Figure 3: Visual representation of the HDI of the corresponding graph measures of figure 2, 

calculated as the slope of the regression line between the graph measure values in the control 

group (as independent variable) and the difference in the graph measure values between the 

reference control group and individual subjects (as dependent variable) at a graph density of 

50%. Cave: These lines represent the best fitting lines as calculated in the HDI, hence not all 

calculated points will fall exactly on these lines. Abbreviations: HC: healthy controls; INP: 

idiopathic neck pain; WAD: whiplash-associated disorder. 
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Table 1: Results from ANCOVA and post-hoc pairwise comparison for demographics, self-reported symptoms and motor performance of study participants. 

  ANCOVA Pairwise comparison 

     INP - HC WAD - HC WAD - INP 

  
F-value df 

P-value MD 

[95% CI] 
P-value 

MD 

[95% CI] 
P-value 

MD 

[95% CI] 
P-value 

DEMOGRAPHICS 

Age Group 3.472 2 0.035 6.73 

[-0.67; 14.13] 
0.083 

7.22 

[0.12; 14.32] 
0.045 

0.49 

[-6.55; 7.53] 
0.985 

Pain duration (months)
† 

Group 0.116 1 0.116 
NA 

0.10 

[-0.48; 0.66] 
0.734 

SELF-REPORTED SYMPTOMS 

Self-reported pain (VNRS) Group 

Age 

26.77 

0.18 

1 

1 

<0.001 

0.672 
NA 

2.92 

[1.79; 4.05] 
<0.001 

Self-reported disability (NDI) Group 

Age 

62.626 

3.959 

2 

1 

<0.001 

0.050 

13.52 

[10.26; 

16.78] 

<0.001 

20.18 

[17.24; 

23.11] 

<0.001 
6.65 

[3.56; 9.75] 
<0.001 

Self-reported sensitization 

(CSI) 

Group 

Age 

136.470 

2.132 

2 

1 

<0.001 

0.148 

17.93 

[11.80; 

24.05] 

<0.001 

27.08 

[21.27; 

32.89] 

<0.001 

9.15 

[3.34; 

14.96] 

<0.001 

MOTOR PERFORMANCE 

Neuromuscular control Group 

Age 

14.471 

2.224 

2 

1 

<0.001 

0.140 

-0.70 

[-1.19; -0.22] 
0.003 

-1.05 

[-1.52; -0.58] 
<0.001 

-0.035 

[-0.81; 0.11] 
0.172 

Strength Group 

Age 

19.793 

2.263 

2 

1 

<0.001 

0.137 
-0.37 

[-0.86; 0.11] 
0.166 

-1.20 

[-1.68; -0.73] 
<0.001 

-0.83 

[-1.29; -

0.36] 

<0.001 

Sway area Group 

Age 

7.996 

4.353 

2 

1 

<0.001 

0.043 

1.04 

[-0.36; 2.44] 
0.186 

2.23 

[0.89; 3.58] 
<0.001 

1.20 

[-0.15; 2.54] 
0.090 

Sway velocity Group 

Age 

3.492 

6.667 

2 

1 

0.036 

0.012 

0.16 

[-0.05; 0.38] 
0.175 

0.22 

[0.02; 0.43] 
0.032 

0.06 

[-0.15; 0.27] 
0.761 

Abbreviations: df: degrees of freedom; INP: idiopathic neck pain, HC: healthy controls; WAD: whiplash-associated disorders; MD: mean difference; 95%-CI: 95% confidence 

interval; VNRS: verbal numeric rating scale; NDI: neck disability index; CSI: central sensitization inventory. 
†
Log-scaled due to non-normality. 
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Table 2A: Descriptive statistics of demographics, self-reported symptoms and motor performance. 

 HC INP WAD 

 Mean (SD) Median Range Mean (SD) Median Range Mean (SD) Median Range 

DEMOGRAHICS  

Age 30.4 (12.3) 24.5 18-62 37.1 (12.2) 36.0 18-62 37.6 (12.0) 38.0 21.0-59.0 

Pain duration 

(months)
* NA 85.2 (82.1) 60 4-288 88.9 (89.4) 60 3-444 

SELF-REPORTED SYMPTOMS 

Self-reported 

pain (VNRS) 
NA 2.87 (2.15) 3 0-6 5.79 (2.20) 6 1-10 

Self-reported 

disability (NDI) 
2.31 (1.49) 2 0-6 15.8 (4.87) 15.5 10-27 22.5 (6.58) 22 10-37 

Self-reported 

symptoms of 

sensitization 

(CSI) 

20.8 (6.44) 21 9-35 38.7 (8.84) 39 22-54 47.8 (12.3) 48 13-67 

MOTOR PERFORMANCE 

Neuromuscular 

control 
0.62 (0.65) 0.60 -0.38-2.24 -0.08 (0.78) 0.05 -1.71-1.40 -0.43 (0.77) -0.45 -1.50-1.40 

Strength 0.57 (0.55) 0.61 -0.57-1.82 0.20 (0.61) 0.22 -1.16-1.29 -0.63 (0.95) -0.66 -2.47-1.18 

Sway area 1.74 (0.63) 1.74 0.57-2.98 2.77 (1.83) 2.11 0.95-8.18 3.97 (2.72) 3.68 0.89-13.70 

Sway velocity 0.77 (0.18) 0.81 0.39-1.03 0.93 (0.40) 0.83 0.50-2.06 0.99 (0.31) 0.95 0.55-1.73 
*
Log-transformed; Abbreviations: HC: healthy controls; INP: idiopathic neck pain; WAD: whiplash-associated disorders; SD: standard deviation in the population; VNRS: 

verbal numeric rating scale; NDI: neck disability index; CSI: central sensitization inventory. 
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Table 2B: Results from Chi-square test for comparison of between-group medication use. 

  Absolute frequency (Relative frequency) Significance 

  HC INP WAD  

NSAID No 30 (100 %) 30 (97 %) 29 (78 %) X² = 11.216 

P = 0.004  Yes 0 (0%) 1 (3 %) 8 (22 %) 

Paracetamol No 30 (100 %) 29 (94 %) 27 (73 %) X² = 12.678 

P = 0.003  Yes 0 (0%) 2 (6 %) 10 (27 %) 

Opiods No 30 (100 %) 31 (100 %) 35 (95 %) X² = 3.336 

P = 0.317  Yes 0 (0%) 0 (0 %) 2 (5 %) 

Abbreviations: HC: healthy controls; INP: idiopathic neck pain; WAD: whiplash-associated disorders; NSAID: non-steroidal anti-inflammatory drugs. 
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Table 3: Results from LMM and post-hoc pairwise comparison for graph centrality metrics based on the HDI (across different densities). 

BETWEEN GROUP COMPARISON 

 Random Intercept model Pairwise comparison 

      HC - INP HC - WAD INP - WAD 

 
AIC 

Est. Χ
2
-

value 
df 

Permuted P-

value 

MD (± 

S.E.) 

P-value 

(permuted*) 

MD (± 

S.E.) 

P-value 

(permuted*) 

MD (± 

S.E.) 

P-value 

(permuted*) 

Betweenness  

centrality 
-52.146 

Group 

Age 

6.662 

12.369 

2 

1 

0.032 

0.014 

0.11 (± 

0.05) 

0.107 

(0.038) 

0.12 (± 

0.05) 

0.044 

(0.016) 

0.02 (± 

0.05) 

0.943 

(0.752) 

Clustering 

coefficient 
978.48 

Group 

Age 

0.364 

9.104 

2 

1 

0.850 

0.004 
NA 

Degree -789.98 
Group 

Age 

0.371 

9.285 

2 

1 

0.820 

0.007 
NA 

Participation  

coefficient 
493.93 

Group 

Age 

0.803 

3.366 

2 

1 

0.694 

0.063 
NA 

Intra-modular  

degree 
-392.12 

Group 

Age 

14.995 

9.065 

2 

1 

0.003 

0.003 

0.13 (± 

0.04) 

0.002 

(< 0.001) 

0.12 (± 

0.03) 

0.002 

(< 0.001) 

-0.01 (± 

0.03) 

0.998 

(0.999) 

Abbreviations: df: degrees of freedom; INP: idiopathic neck pain, HC: healthy controls; WAD: whiplash-associated disorders; MD: mean difference; S.E.: standard error of 

the mean; Est.: estimate; AIC:  Akaike information criterion.  
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Table 4: Identification of central brain hubs 

 CONNECTOR  PROVINCIAL HUB 

HUBS 

identified in 

the reference 

network 

Inferior temporal gyrus (lh) 

Middle temporal gyrus (lh) 

Superior frontal gyrus(lh) 

Lateral orbitofrontal gyrus (rh) 

Posterior cingulate gyrus (bil.) 

Superior temporal gyrus (bil.) 

Entorhinal (bil.) 

Temporal pole (bil.) 

Accumbens area (bil.) 

Amygdala (bil.) 

Pallidum (bil.) 

Putamen (rh) 

HUB ALTERATIONS 

 

 

BETWEENNESS CENTRALITY MODULE DEGREE 

BETWEEN 

GROUP 

DIFFERENCES 

LARGER 

THAN 2 SD 

 

HC > WAD HC < WAD HC > WAD HC < WAD 

Posterior 

Cingulate (lh) 

 

 

 

 

 Temporal pole 

(rh) 

Amygdala (rh) 

Pallidum (lh) 

HC > INP HC < INP 

 Amygdala (rh) 

Pallidum (lh) 

Abbreviations: SD: standard deviation; INP: idiopathic neck pain, HC: healthy controls; WAD: 

whiplash-associated disorders; lh: left hemisphere; rh: right hemisphere; bil.: bilateral. 
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Table 5: Associations between the HDI and clinical symptoms. 

ASSOCIATION BETWEEN HDI AND CLINICAL SYMPTOMS 

     PARAMETERS 

 AIC Χ
2
-value df P-value Inter. Beta (S.E.) P-value Age (S.E.) P-value R

2
 

BETWEENNESS CENTRALITY 
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2 

 

 

 

Pain Duration (months) -87.230 8.461 2 0.015 0.165 -0.038 (0.025) 0.118 -0.005 (0.002) 0.040 0.06 

Disability (NDI) -143.51 17.847 2 <0.001 0.133 -0.005 (0.002) 0.024 -0.005 (0.002) 0.003 0.11 

Central sensitization (CSI) -134.38 8.079 2 0.004 0.194 -0.004 (0.001) 0.004 -0.004 (0.002) 0.015 0.13 

Self-reported Pain (VNRS) -64.563 6.825 2 0.032 0.037 0.007 (0.011) 0.419 -0.006 (0.002) 0.017 0.06 

Neuromuscular control -23.625 9.605 2 0.008 0.078 0.030 (0.030) 0.310 -0.005 (0.002) 0.010 0.08 

Strength -24.544 10.524 2 0.005 0.073 0.038 (0.028) 0.163 -0.005 (0.002) 0.010 0.07 

Sway area -16.984 10.725 2 0.005 0.130 -0.015 (0.013) 0.246 -0.006 (0.002) 0.008 0.10 

Sway velocity -15.706 9.447 2 0.009 0.128 -0.024 (0.091) 0.790 -0.006 (0.002) 0.005 0.08 

INTRAMODULAR DEGREE 

Pain Duration (months) -211.04 5.384 2 0.068 NA 

Disability (NDI) -354.85 20.76 2 <0.001 0.086 -0.005 (0.002) 0.005 -0.004 (0.001) 0.004 0.13 

Central sensitization (CSI) -353.55 9.328 2 0.002 0.137 -0.003 (0.001) 0.002 -0.003 (0.001 0.008 0.14 

Self-reported Pain (VNRS) -203.55 4.436 2 0.109 NA 

Neuromuscular control -331.30 24.84 2 <0.001 0.031 0.066 (0.019) <0.001 -0.004 (0.001) 0.004 0.16 

Strength -323.09 16.634 2 <0.001 0.051 0.036 (0.019) 0.056 -0.004 (0.001) 0.001 0.11 

Sway area -255.16 15.196 2 <0.001 0.097 -0.008 (0.008) 0.362 -0.005 (0.001) <0.001 0.12 

Sway velocity -255.65 15.686 2 <0.001 0.050 0.065 (0.0577) 0.251 -0.006 (0.001) <0.001 0.12 

Abbreviations: df: degrees of freedom; INP: idiopathic neck pain, HC: healthy controls; WAD: whiplash-associated disorders; MD: mean difference;  S.E.: standard error of 

the estimate; Est.: estimate; AIC: Akaike information criterion; VNRS: verbal numeric rating scale; NDI: neck disability index; CSI: central sensitization inventory; Inter.: 

intercept. 
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