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Abstract 

An overview of molecular modelling approaches, related to chiral separations on 

polysaccharide-based and macrocyclic antibiotic chiral selectors, is presented. Both atomistic 

calculations and empirical fitting procedures are discussed. Atomistic calculations, such as 

docking and molecular dynamics can be used to model the interactions between enantiomers 

and the chiral stationary phase. This may help obtaining information about the chiral 

recognition mechanism. Conversely, in empirical fitting procedures, mathematical models for 

relevant separation parameters are fitted to experimental observations. The latter use 

theoretical molecular descriptors, calculated from the molecular structure, which are combined 

into a model to predict a given response, for example, retention. Such relationships, when used 

in chiral separations, are often called quantitative structure enantioselective retention 

relationships (QSERR) and an increased interest in them can be observed in the literature. 

Different regression models are discussed, such as multiple linear regression and partial least 

squares. 
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1. Introduction 

Any chiral molecule has a mirror-image counterpart, its enantiomer, on which it cannot be 

superposed. In other words, enantiomers are a special case of stereo-isomers, with the same 

atoms arranged into different three-dimensional structures. However, being mirror images, 

enantiomers have identical physicochemical properties, except for their optical rotations and 

their behaviour in asymmetric environments [1]. As biological environments are asymmetric, 

enantiomers generally exhibit different biological activities in organisms [1, 2]. As a 

consequence nowadays enantiopure drugs, i.e. drugs containing only one enantiomer, 

became more important as they should be preferentially developed over racemates [3]. The 

regulatory agencies around the world introduced guidelines to separately evaluate racemates 

and enantiomers [4]. 

In a drug development stage, an enantiopure drug may be obtained by asymmetric synthesis 

or by separation of a racemic mixture [3]. Since both enantiomers have to be investigated 

separately, each enantiomer might be synthesized, but it is typically easier to develop a 

synthetic pathway for the racemic mixture and to separate both enantiomers with a chiral 

separation method [5]. As a consequence separation techniques became very important to 

resolve enantiomers from a racemic mixture, both for analytical and (semi-)preparative 

purposes [1, 5]. To separate enantiomers, chiral chromatographic techniques are the most 

often applied. 

In liquid chromatography, three approaches to separate enantiomers exist: (1) the indirect 

approach; (2) the direct approach with addition of chiral mobile-phase additives (CMPA), and 

(3) the direct approach using chiral stationary phases (CSP). For more information about these 

approaches we refer to [6]. 

Within the chromatographic approaches, supercritical fluid chromatography (SFC) is 

increasingly applied for enantioseparations for analytical and preparative purposes. The 

mobile phase in SFC contains supercritical carbon dioxide (CO2), which is inflammable, cheap 

and non-toxic. Moreover, in the specific context of preparative chromatography, less time and 
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energy are necessary to evaporate the mobile phase, because the amount of co-solvent used 

in SFC is very low and usually methanol. Finally, CO2 can be separated from the co-solvent 

and recycled [7, 8]. 

Hundreds of CSP are already synthesized by different research groups, but two classes are 

the most important for chiral separations: polysaccharide CSP (Figure 1), introduced by 

Okamoto et al. [9, 10, 11], and macrocyclic antibiotic CSP (Figure 2), developed by Armstrong 

et al. [12]. They both have broad chiral recognition abilities. More information about these 

selectors can be found in [6, 13, 14, 15].  

 

 

Figure 1. Different types of polysaccharide CSP. Reproduced with permission from [16].  

X = a: 3,5-(CH3)2; b: 3,5-Cl2; c: 3-Cl; d: 3-Cl-4-CH3.  

(1a): cellulose tris-(3,5-dimethylphenylcarbamate); (1b): cellulose tris-(3,5-dichlorophenylcarbamate); 

(2a): amylose tris-(3,5-dimethylphenylcarbamate); (2b): amylose tris-(3,5-dichlorophenylcarbamate); 

(2c): amylose tris-(3-chlorophenylcarbamate); (2d): amylose tris-(3-chloro-4-methylphenylcarbamate); 

(3): cellulose tris-(4-methylbenzoate); (4): amylose tris-[(S)-α-methylbenzylcarbamate].  
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Figure 2. Macrocyclic antibiotic CSP: vancomycin (left) and teicoplanin (right). Reproduced with 

permission from [17]. 

 

The chiral recognition mechanisms for both polysaccharide and macrocyclic antibiotic CSP are 

still not fully understood, despite much research has already been dedicated to it [6, 18, 19, 

20]. Interactions important for both the general retention and for the enantioseparation exist 

between enantiomers and CSP [13]. When considering retention, hydrophobic interactions (π-

π interactions) are important in reversed-phase elution mode, whereas in normal phase and 

polar organic elution mode, hydrophilic interactions (hydrogen-bonds) are pertinent. Although 

multiple types of interactions may be considered in case of enantioseparations [21]. 

For polysaccharide CSP, the most important interactions are hydrogen-bonds with the 

carbamate groups and π-π interactions with the phenyl rings. The latter are on the outside of 

the polysaccharide chain, forming grooves in which the carbamate groups are embedded [20, 

21]. Furthermore, Peluso et al. [22, 23, 24, 25] investigated the role of halogen bonds, which 

seem to be important in the chiral recognition process. These are electrostatic interactions, 

which arise from the anisotropic electron distribution around covalently bonded halogen atoms.  

Macrocyclic antibiotic selectors contain a peptidic core with terminal carboxylic acid and amine 

groups. These groups are ionized at a certain pH and may interact with compounds through 

ionic interactions. These selectors contain also four fused macrocyclic rings (except 

vancomycin which contains three) embedded by several aromatic groups, hydroxyl functions 

and sugar units (except the teicoplanin aglycone selector), which are responsible for π-π 
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interactions (aromatic rings), hydrogen-bonds (hydroxyl functions), dipole-dipole interactions, 

steric hindrance and London dispersion interactions [18]. 

 

The chiral recognition mechanisms of high-molecular weight selectors have been studied using 

spectroscopic methods, such as nuclear magnetic resonance (NMR) and infrared (IR) 

spectroscopy [26]. Because of the different binding sites with diverse affinities for enantiomers, 

it is difficult to determine the selector structures in the solid state and in solution. In addition, 

popular chiral selectors often exhibit solubility problems in several solvents and/or do not show 

chiral discrimination in solvents in which they are soluble. Therefore, computational methods 

are often employed to supplement the experimental data [26]. However, for polysaccharide 

and macrocyclic antibiotic selectors, the elucidation of the chiral recognition mechanism and 

the prediction of chiral separations remains challenging. 

 

Apart from the use of molecular modelling approaches to gain fundamental insight in the chiral 

recognition mechanism, models may also help predicting separation parameters. Indeed, while 

the separation of enantiomers is important in many fields of industrial and pharmaceutical 

research, the selection of a suitable chromatographic system (chiral selector and mobile 

phase) is not trivial. As a consequence, chiral method development requires considerable 

experimentation and is often highly demanding with respect to time, material and labour. The 

use of adequate models may be an advantage as they would allow selecting a suitable 

chromatographic system to obtain an enantioseparation [27]. However, many types of 

interactions are important when considering high-molecular weight selectors. Therefore a 

structurally diverse test set has to be used to be able to construct suitable models.  

Two different types of models can be distinguished: empirical fitting procedures and atomistic 

models. Fitting procedures are generally based on a regression model, which is used to find a 

correlation between physical, chemical or biological properties on the one hand and molecular 

descriptors that are derived from the molecular structure on the other hand. Conversely, 

atomistic models in a general sense attempt to quantify the energetics of all the interactions 
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between the atoms in the analytes and the chiral selectors. Both molecular docking and 

molecular dynamics (MD) [28] belong in this category.  

 

Recently, Sardella et al. [29] reviewed atomistic calculations of the last four decades to explain 

the enantiomer elution sequence on both low- and high-molecular weight selectors.  

In contrast, the present review focuses on applications of molecular modelling approaches in 

enantioseparations on high-molecular weight selectors, i.e. polysaccharides and macrocyclic 

antibiotics, and differentiates from the above review by the inclusion of not only atomistic 

calculations, but also empirical fitting procedures to predict enantioselectivity, besides the 

application of atomistic calculations, covering the period 2015 - 2020.  

 

2. Molecular calculations 

2.1 Molecular Dynamics 

The first step of any MD simulation is the construction of a molecular system, which in this 

context would consist of a chiral selector, a large number of solvent molecules, and optionally 

one or more analyte molecules. In this system, the thermal motions of all atoms are simulated 

on a short time scale – typically in the order of 10 ns to 10 µs. This is done by numerically 

integrating Newton’s equations of motion, which requires knowledge of the forces on all the 

atoms. Such forces are typically obtained from an empirical force field, which represents the 

potential energy surface of a molecule using simplified mathematical functions [30, 31]. 

The force fields most commonly used for simulations involving biomolecules represent the 

system with a so-called “Class I additive Potential Energy Function” (PEF). Such PEFs require 

large numbers of parameters determining the forces between chemically bonded atoms 

(chemical bonds, atomic angles and dihedral angles (rotations about a bond)), and forces 

between non-bonded atoms (Van der Waals interactions and electrostatic interactions) [32].  

Accordingly, a force field is the totality of its PEF and its parameter set, and the latter is 

essentially what distinguishes the commonly used biomolecular force fields and the different 
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versions thereof [33, 34]. Popular examples are AMBER [35], CHARMM [36, 37], GROMOS 

[32, 33, 38] and OPLS [34]. 

Until recently, atomistic studies of chromatographic separations and chiral separations were 

limited to static calculations that took neither the solvent effect nor the fact that the process of 

enantiorecognition in chromatography is dynamic into account [39]. Conversely, in this section, 

we will consider true MD studies that include the solvent effect and the dynamic process of 

enantiorecognition during chromatographic separation; static calculations are deferred to §2.2 

(Molecular Docking). 

In MD simulations, solvents can be treated either explicitly or implicitly [40]. In explicit-solvent 

simulations, the simulation system includes thousands of solvent molecules, whereas implicit-

solvent methods treat the solvent as a continuum. This is significantly less accurate, but 

historically, this sped up the simulation by reducing the number of particles in the system. 

However, trends in processor architecture have weakened this performance advantage, 

precipitating a rise in popularity of explicit solvent simulations. 

Table 1 contains a summary of recent papers that applied MD simulations to chiral separations. 

 

Table 1. Summary of recent MD simulations performed using different analytes and CSP. 

Analytes CSP (1) Force Field / medium Year (reference) 

Pyrazole derivatives Cellulose tris-(4-

methylbenzoate) 

Polymer consistent force 

field (PCFF) / 7 different 

dielectric constants 

2016 [41] 

Flavanone ADMPC General AMBER force 

field (GAFF) / explicit-

solvent (methanol; 

heptane/IPA (90/10 v/v)) 

2017 [1]  

10 chiral molecules ADMPC GAFF / explicit-solvent 

(methanol; heptane/IPA 

(90/10 v/v); acetonitrile) 

2019 [39] 

8 chiral halogenated 

4,4’-bipyridines 

CDMPC, ADMPC GAFF / explicit-solvent 

(n-hexane) 

2018 [42] 
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4 chiral molecules ADMPC GAFF / explicit-solvent 

(methanol; heptane/IPA 

(90/10 v/v)) 

2020 [2] 

Carnosine enantiomers Teicoplanin A2-2 OPLSe / explicit-solvent 

(methanol/water (60/40 

v/v)) 

2020 [43] 

(1) ADMPC: amylose tris-(3,5-dimethylphenylcarbamate), CDMPC: cellulose tris-(3,5-

dimethylphenylcarbamate) 

 

ADMPC is a widely used selector and many groups performed research to elucidate its 

recognition mechanism. ADMPC has a helical structure where the carbamate groups are 

located inside the grooves of the polymer and the phenyl groups on the outside of the polymer 

chain [1].  

Zhao et al. [1] used explicit-solvent atomistic MD simulations to investigate the effect of the 

used solvents on the chiral recognition mechanism of ADMPC for flavanone enantiomers. 

Methanol and heptane/isopropanol (90/10 v/v) were used as solvent systems and it was 

observed that the dimensions of ADMPC differ depending on the solvent. The ADMPC helix is 

longer in heptane/isopropanol (90/10 v/v) than in methanol. In addition, the hydrogen-bonding 

lifetime between the CSP and flavanone enantiomers was determined. For both solvents the 

hydrogen-bonding lifetime was found higher for the S enantiomer, which corresponds with the 

experimental results, where a longer retention of the S enantiomer was observed. When 

comparing the selectivity in both solvent systems, it was observed that the selectivity was lower 

in heptane/isopropanol (90/10 v/v) than in methanol. 

Wang et al. [39] used explicit-solvent atomistic MD simulations to investigate the dynamic 

interaction between ADMPC and enantiomers, as well as the effects of different solvents 

(methanol, heptane/isopropanol (90/10 v/v) and acetonitrile) on both. In Figure 3, an example 

of possible interactions for benzoin enantiomers can be observed. A metric to predict the 

elution sequence of the enantiomers, which correlates with the ratio of their retention times, 

was also proposed. It was based on the hydrogen-bond lifetime, since long-living hydrogen-
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bonds between enantiomer and CSP slow down the passage through the CSP, while the 

opposite is seen when weak hydrogen-bonds are formed. The experimental elution sequence 

could be explained very well in both simulated solvents. 

 

Figure 3. Snapshot of an MD simulation for the R (right image) and S (left image) enantiomers of 

benzoin on an ADMPC CSP. Both enantiomers show multiple interactions with CSP: ring-ring 

interactions (dashed line) and hydrogen-bond interactions (arrow from donor to acceptor). Reproduced 

with permission from [39].  

 

In a follow-up study, the same research group [2] built a model consisting of multiple ADMPC 

strands coated on an amorphous silica surface to have a more representative model for the 

real CSP and the interactions with the enantiomers. Explicit-solvent fully atomistic MD 

simulations were again used to investigate the interactions between ADMPC, enantiomers and 

solvents. The results of these improved models were more consistent with experimental elution 

sequences and separation factors.  

 

Another group [41] studied the effect of temperature and solvent on a cellulose tris-(4-

methylbenzoate) CSP using pyrazole derivatives. They investigated the interaction energy 

between the enantiomers and CSP using different dielectric constants as a coarse 

approximation for the effects of different solvents. Under polar eluent conditions, the R 

enantiomer eluted last, which was attributed to a stronger relative contribution of apolar 

interactions to the binding energy. Under non-polar conditions the elution sequence changed, 
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with the S enantiomer eluting as last, caused by stronger polar interactions. The difference in 

interaction energy at different temperatures was less significant than the solvent effect. 

 

Recently, halogen-bond interactions between enantiomers and cellulose-based CSP have 

been described [22]. A halogen bond is a non-covalent interaction in which an electron-rich 

region of an acceptor atom is attracted to a region of positive electrostatic potential that occurs 

on single-bonded halogen atoms opposite to the atom they are bonded to [24]. Peluso et al. 

[42] investigated this phenomenon in a MD study using nonamer (9-mer) ADMPC and CDMPC 

selectors, as halogen-bond acceptors in an n-hexane box resembling normal-phase liquid 

chromatography (NPLC) conditions. The aim of this study was to obtain more insights into the 

halogen-bond-driven chiral separations. Eight halogenated 4,4’-bipyridines were investigated 

on both selectors and 37,5% and 75% of the experimental elution sequences obtained with 

ADMPC and CDMPC, respectively, were explained. Figure 4 shows an example of a simulation 

of the occupancy of 2,2’,3,3’,5,5’-hexaiodo-4,4’-bipyridine in a groove of CDMPC. The last 

eluted enantiomer showed a deeper insertion into the CDMPC selector, whereas the first 

eluted enantiomer is more present at the surface. This is in accordance with the experimental 

results and generally demonstrates that halogen-bond interactions could cooperate in 

enantiorecognition processes driven by π-π or hydrogen-bond interactions.  

 

Figure 4. MD simulation of the occupancy of 2,2’,3,3’,5,5’-hexaiodo-4,4’-bipyridine in a groove of 

CDMPC: (A) complex with first eluted enantiomer; (B) complex with last eluted enantiomer [42]. 
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Sardella et al. [43] performed MD simulations to study the chiral recognition mechanism of 

carnosine, a dipeptide, on a teicoplanin A2-2 selector. The number of hydrogen-bonds 

between (S)-carnosine and the selector was found to be higher than with (R)-carnosine, but 

this was not the case for charge-charge and cation-π interactions. During the MD trajectory, 

the most important interactions identified between the enantiomers and the selector were 

hydrogen-bond and ionic interactions. The difference in retention time between both 

enantiomers, and the later elution of the R enantiomer, was explained by the observation that 

(R)-carnosine engaged in one more charge-charge interaction with the selector than the 

corresponding S enantiomer. These results were in accordance with those obtained in 

reference [44] in reversed-phase liquid chromatography (RPLC) conditions and a teicoplanin 

A2-2 selector. 

 

2.2 Molecular Docking 

In the context of chiral separations, molecular docking calculations are to study the interaction 

between the CSP (receptor) and both enantiomers (ligands) by approximately predicting the 

binding geometries and ranking the binding affinities of the enantiomers binding to the CSP 

[13]. It involves two steps: prediction of the conformation of the enantiomers in the binding site 

of the selector (“posing”) and estimation of the binding affinity (“ranking” or “scoring”). Since 

there are many possible conformations, sampling algorithms are developed to “sample” 

different conformations of the molecules in the selector [45]. Subsequently, scoring functions 

are applied to rank all conformations based on the binding affinity between ligand and receptor 

[45]. 

The most commonly used software for studying interactions between enantiomers and chiral 

selectors is AutoDock [13]. Although older docking programs typically kept the receptor 

immobile, more recent branches of Autodock, specifically AutoDock 4 and AutoDock Vina, 

allow flexibility of side chains of the receptor [45, 46]. It should however be noted that all current 

docking programs are highly optimized for protein receptors in an aqueous medium. Thus, 

applying them on non-protein chiral selectors in a solvent mixture with different properties than 
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water would be expected to yield less accurate results. Several research groups performed 

docking calculations to elucidate the chiral recognition mechanism on different types of CSP, 

as summarized in Table 2. 

 

Table 2. Recent docking calculations using different analytes and CSP. 

Analytes CSP (1) Docking 

software/medium 

Year (reference) 

Pidotimod ADMPC GOLD/vacuum 2015 [47] 

16 dipeptide 

enantiomers 

ADMPC AutoDock 4.2/vacuum 2015 [48] 

2 dipeptides ADMPC AutoDock 4.2 

Vina/vacuum 

2015 [49] 

4 enantiomers of 5-

bromo-3-ethyl-3-(4-

nitrophenyl)-piperidine-

2,6-dione 

ADMPC AutoDock 4.2/vacuum 2016 [50] 

Enantiomers of four 3-

aryl-substituted-γ-

butyrolactones 

ADMPC AutoDock 4.2/accounted 

for mobile phase by the 

use of dielectric constant 

2017 [51] 

Eight azole antifungals CDCPC AutoDock 4.2/vacuum 2018 [52] 

Eight anticholinergic 

drugs 

ACPC AutoDock 4.2/vacuum 2018 [53] 

7-[1-alkylpiperidin-3-

yl)methoxy]coumarin 

derivatives 

ADMPC AutoDock 4.2/vacuum 2018 [54] 

Six quinolones Teicoplanin AutoDock 4.0/vacuum 2018 [55] 

Chiral xanthonic 

derivatives 

Teicoplanin, teicoplanin 

aglycone, vancomycin 

and ristocetin 

AutoDock Vina/vacuum 2018 [17] 

Napropamide ADMPC, CDMPC, 

CCMPC 

Molegro/vacuum 2018 [56] 
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Five β-adrenergic 

blockers 

CDCPC AutoDock 4.2/vacuum 2019 [57] 

Pantoprazole Teicoplanin aglycone AutoDock Vina/vacuum 2019 [58] 

Mandelic acid Vancomycin AutoDock Vina/vacuum 2020 [59] 

Eight psychoactive 

drugs 

Cellulose tris-(4-

methylbenzoate) 

AutoDock 4.2/vacuum 2020 [60] 

(1) CDCPC: cellulose tris-(3,5-dichlorophenylcarbamate), ACPC: amylose tris-(3-

chlorophenylcarbamate), CCMPC: cellulose tris-(3-chloro-5-methylphenylcarbamate) 

 

Dou et al. [47] performed docking calculations on an ADMPC selector using pidotimod, a 

synthetic dipeptide with two chiral centres, to examine the enantiorecognition mechanism. The 

driving force for enantioseparation seems to be Van der Waals interactions.  

Ali et al. [48] performed docking calculations using 16 dipeptides on an ADMPC CSP. Only 

one of 2 chiral centres was changed, leading to two configurations for each dipeptide, i.e. SS 

and SR. The docking energy of the SR enantiomer was observed to be more negative than 

that of the SS enantiomer, although the difference was very small. The SS enantiomer was 

predicted to elute first, because for the SR enantiomer a stronger interaction with the CSP is 

expected. The most important interactions were determined to be hydrogen-bond and π-π 

interactions. Since no experimental results were available, no comparison with experimental 

results could be made. In a follow-up study, the same research group resolved two dipeptides 

(DL-alanine-DL-tyrosine & DL-leucine-DL-phenylalanine) on an ADMPC CSP in RPLC mode 

[49]. The interactions with the CSP were also evaluated using docking calculations to predict 

the elution sequence. The chromatographic results report that the stereoisomers from both 

dipeptides eluted in the following sequence: LL, DD, DL, LD. This sequence shows a 

discrepancy with the docking energies, which were reported the most negative for the LL 

enantiomer and the least for the LD enantiomer.  

In a third paper, the chiral recognition mechanism and elution sequence of four 5-bromo-3-

ethyl-(4-nitrophenyl)-piperidine-2,6-dione enantiomers were also studied on an ADMPC 
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selector [50]. The major forces for chiral recognition were again determined to be hydrogen- 

bonds and π-π interactions. 

Rossi et al. [51] used docking calculations to predict the elution sequence of four γ-

butyrolactone derivatives on an ADMPC CSP. The S enantiomer was predicted to elute first 

for all derivatives due to the weaker binding energies. The R enantiomer showed a better fit in 

the amylose CSP, with a stronger hydrogen-bond than the S enantiomer.  

Zhu et al. [52] studied the interactions of eight azole antifungals with a CDCPC CSP. 

Differences in binding energies were observed between enantiomers. The differences were 

determined by the number and strength of the intermolecular interactions with the CSP. For 

example, in Figure 5 the docking calculation of both enantiomers of butoconazole is presented. 

The R enantiomer showed the most negative docking energy, which means that a more stable 

complex is formed between that enantiomer and the CSP, whereas the S enantiomer showed 

the least negative docking energy and thus less stable complex with the CSP in agreement 

with the experimental data. The study also sought to obtain information about the interaction 

mechanism, pointing to hydrophobic interactions and hydrogen-bonds as the most important 

interactions.  

Li et al. [53] performed calculations for eight anticholinergic drugs on an ACPC CSP to study 

their recognition mechanism. The binding energies were calculated to predict the interaction 

strength of each enantiomer with the CSP and those results were in agreement with the 

experimental data.  

Pisani et al. [54] studied the enantiorecognition mechanism of several racemic 7-[1-

alkylpiperidin-3-yl)methoxy]coumarin derivatives on an ADPMC CSP, besides building 

quantitative structure property relationships (QSPR), which are discussed lower. Docking 

calculations gave better insight in the intermolecular forces that are important for the 

enantioselective binding of the investigated compounds on the CSP. It was observed that the 

enantiomers could bind into cavities present in the CSP. The binding was stronger for the S 

enantiomers than for the R enantiomers. In fact, the 3-NO2-phenyl group of the S enantiomer 

is able to go deeper into the CSP ravine, which results in strong π-π and hydrogen-bond 
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interactions. For the R enantiomer, the 3-NO2-phenyl group is directed towards the solvent, 

leading to weaker interactions. 

Zhao et al. [57] performed docking calculations on a CDCPC CSP using five beta blockers. 

Different enantioselectivity values were experimentally seen for these analytes and the study 

sought to rationalize this with docking calculations. For each pair of enantiomers, the difference 

in binding energies ∆∆E was determined by subtracting the respective docking scores. This 

quantity correlated well with the enantioselectivity (α), a measure that gives information about 

the ability of the chiral stationary phase to discriminate between two enantiomers. For example, 

(R)-bevantolol (∆E = -5.96 kcal/mol) and (S)-bevantolol (∆E = -5.04 kcal/mol) showed the 

highest ∆∆E value (0.92 kcal/mol), which corresponded to the high observed enantioselectivity. 

The most important interactions observed were hydrogen-bond interactions and π-π 

interactions. 

As can be concluded from the above, there exists a moderately large body of docking studies 

for polysaccharide CSP. Conversely, docking studies for macrocyclic antibiotic CSP started 

appearing more recently. These will be the subject of the remainder of this section. 

Ali et al. [55] performed docking calculations on a teicoplanin CSP in RPLC mode using 

quinolones. The results predicted a stronger interaction with the R enantiomer than with the S 

enantiomer, and thus a shorter retention of the latter. The most important interactions are 

hydrogen-bond (due to the presence of oxygen and nitrogen atoms in the molecules) and 

hydrophobic interactions.  

Phyo et al. [17] carried out enantioseparations using thirty-one chiral xanthonic derivatives on 

four macrocyclic antibiotic CSP (Chirobiotic V (vacomycin), Chirobiotic T (teicoplanin), 

Chirobiotic TAG (teicoplanin aglycone) and Chirobiotic R (ristocetin)) in different elution modes 

and performed docking studies to understand the underlying recognition mechanisms. The 

elution sequence calculated from the docking energies showed an agreement with the 

experimental results of 52%, 50%, 47% and 80% for Chirobiotic T, R, V and TAG columns, 

respectively. The prediction of elution sequences was not as expected, which might be due to 
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the relatively large diversity in types (steric, hydrophobic, hydrogen-bonding, ionic and π-π 

interactions) and numbers of interactions between the enantiomers and chiral selectors.  

Papp et al. [58] determined the elution sequence of the pantoprazole enantiomers on a 

teicoplanin aglycon-based CSP in RPLC mode using a circular dichroism (CD) detector and 

performed molecular docking studies (Figure 5). Two types of interactions could be identified: 

hydrogen-bond and π-π interactions. In the docking poses, a high number of such interactions 

was identified for (R)-pantoprazole, in agreement with its stronger predicted binding affinity as 

well as the experimental elution sequence. 

 

 

Figure 5. Docking calculations of pantoprazole enantiomers on teicoplanin aglycone CSP. The 

difference in binding energy between both enantiomers (∆R-SEA, calculated as the difference in binding 

energy between the R -and S enantiomer) is caused by the difference in the number of interactions 

between both enantiomers. Reproduced with permission from [58]. 

 

Shahnani et al. [59] studied the interactions between a vancomycin CSP and mandelic acid 

enantiomers in NPLC mode. The predicted binding energy was higher for the R enantiomer, 

and in agreement with its longer experimental retention time. The docking suggested that both 

enantiomers showed π-π and hydrogen-bond interactions with the vancomycin selector, but 

the R enantiomer interacts also similarly within the hydrophobic pockets of the selector. This 
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result confirmed the longer retention of the R enantiomer observed from the experimental 

results.  

 

Cai et al. [60] performed molecular docking calculations of eight chiral psychoactive drugs 

(mirtazapine, sulpiride, promethazine, citalopram, oxazepam, cyamemazine, donepezil and 

oxybutynin) on a cellulose tris-(4-methylbenzoate) selector. For each pair of enantiomers, the 

difference between the binding energies (∆∆E) was calculated. The results were consistent 

with the experimental values for the enantioselectivity α. For example, out of this series of 

analytes, cyamemazine showed both the highest ∆∆E value and the largest difference in 

retention between both enantiomers. The docking pose in Figure 6 clearly shows that both 

enantiomers are bound to the CSP in different orientations. For (S)-cyamemazine, π-π and 

hydrophobic interactions can be observed, whereas only hydrophobic interactions are for (R)-

cyamemazine. This observation was used to explain the high ∆∆E value. 

More generally spoken, the main interactions between the psychoactive enantiomers and CSP 

were hydrogen-bond, π-π and hydrophobic interactions [60].  

 

Figure 6. Docking calculations of cyamemazine enantiomers on cellulose tris-(4-methylbenzoate) CSP: 

(R)-cyamemazine is yellow and (S)-cyamemazine is purple. Reproduced with permission from [60]. 

 

Although high performance liquid chromatography (HPLC) is an important technique for chiral 

separations, SFC has recently gained popularity, among others of its shorter elution times. The 

latter are due to the low viscosity and high diffusivity of the supercritical fluid, which enables 
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using higher flow rates. As a consequence, it is a technique that has been extensively used in 

the pharmaceutical industry [56].  

Zhao et al. [56] performed the enantioseparation of the pesticide napropamide by SFC using 

three polysaccharide CSP’s (ADMPC, CDMPC and CCMPC) as well as docking calculations. 

(S)-napropamide eluted first on the amylose-based CSP, while (R)-napropamide did on the 

cellulose-based CSP. This was in accordance with the docking calculations, where hydrogen-

bond interactions seem to be the most important for enantioseparation. 

 

3. Fitting procedures 

Fitting procedures try to make a correlation between the molecular structure expressed by 

using molecular descriptors and physical, chemical or biological properties in a regression 

model [28]. Since more than one hundred of CSP are available, method development for 

enantioseparations is challenging, because many chromatographic systems are possible and 

prediction of enantioselectivity not evident. As a consequence, molecules have to be analyzed 

by trial-and-error and screening approaches, which are labour intensive and time consuming 

[61]. A database named Chirbase, developed by Roussel and co-workers in the late 1980s 

[62], was an innovation to overcome this situation. Chirbase is a database containing data 

about enantioseparations and the applied conditions. This data can be used to build models 

to predict enantioseparation or to calculate descriptors, which can be also implemented into 

models. Although, Sheridan and co-workers [63] built models based on data from Chirbase, 

they concluded that it was difficult to obtain effective models. The main reason was that 

Chirbase contains only separation data for a limited set of molecules on a limited set of CSP, 

which means that not every molecule is tested on every CSP. This makes it difficult to build 

models for all possible CSP. 

Models can be built to predict chromatographic retention of compounds. They can be divided 

in two groups: (i) models that describe retention of molecules under changing chromatographic 
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conditions, and (ii) models built for one chromatographic system to predict the retention of new 

molecules [61]. 

The first group of models are based on the retention prediction of a solute at given 

chromatographic conditions from a model derived on previous measurements for the same 

solute performed under varying chromatographic conditions. These models are generally 

based on the linear solvent strength model, which uses, for instance, for non-chiral RPLC the 

equation: 

                 log k = log kw – Sφ                                                                                   (1) 

where k is the solute retention factor, log kw is log k extrapolated to a mobile phase containing 

0% of organic modifier, S is a constant for a compound in a certain chromatographic system 

and φ is the fraction of organic modifier present in the mobile phase [61]. 

 

The second group of models describes the relationship between a set of molecular descriptors 

and retention. They are called quantitative structure-retention relationships (QSRR). These 

relationships will be discussed further. An example of QSRR models are the linear free-energy 

relationships (LFER), also called linear solvation energy relationships (LSER) when used in 

HPLC to predict retention [61]. 

QSRR models can be built using chemometric tools, like multiple linear regression (MLR), 

partial least squares regression (PLS) and artificial neural networks (ANN). These models 

predict retention for new compounds, but also provide more information about the separation 

mechanism, identification of the most informative descriptors, evaluation of biological activities 

and of non-chromatographic properties [61].  

These models are not always capable of distinguishing between enantiomers, because they 

use achiral molecular descriptors. Therefore chiral descriptors should be used to create 

models that can make a distinction between two enantiomers. In the next part of this review, 

the most important molecular descriptors that distinguish between enantiomers will be 

discussed. Then the modelling approaches are discussed to get insight in the most recent 

findings about predictive modelling. 
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3.1 Descriptors 

QSRR models can be built to model and predict retention. As already stated above LSER use 

the Abraham descriptors, i.e. five descriptors to model a solute property (SP), for example, log 

k [8]. The equation is as follows:  

 

           SP = c + eE + sS + aA + bB + vV                                                                 (2) 

 

The capital letters represent the solute descriptors, which are related to structural features. E 

is the excess molar refraction, S the solvatochromatic parameter π* (a combination of the 

polarity and the polarizability of the compound of interest as a bulk sovent), A and B the overall 

hydrogen-bond acidity (donating groups) and basicity (accepting groups), respectively, and V 

the McGowan characteristic volume. The lowercase letters are the system constants (model 

coefficients), related to the complementary effect of the stationary and mobile phase on these 

interactions, and c is the intercept of this equation [8]. For more information about LSER, we 

refer to ref. [64]. 

In QSRR approaches, molecular descriptors in general, calculated from the molecular formula 

or structure, may be used. For this purpose, software was developed, for example alvaDesc 

(Kode chemoinformatics srl., Pisa, Italy), BlueDesc (G. Hinselmann, University of Tübingen, 

Germany, 2008) and Mordred [65], which are able to calculate many descriptors [61].  

Unfortunately these descriptors generally cannot distinguish between enantiomers. Therefore 

attempts have been made to devise descriptors that distinguish between enantiomers, the so-

called chiral descriptors [66]. QSRR that use chiral descriptors are also called quantitative 

structure enantioselective retention relationships (QSERR). 

 

Several research groups have developed chiral descriptors. Since we will mainly focus on 

more recent chiral descriptors, we refer to a review by Del Rio [19] for information about earlier 

developments in this domain. 
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The group of West was the first to use LSER relationships to predict the degree of separation 

between two enantiomers (but not their elution sequence) [67]. The LSER model in this study 

was augmented with two additional descriptors, flexibility (F) and globularity (G), because 

these quantities are thought to be important in the chiral recognition mechanism. 

 

Aires-de-Sousa and Gasteiger [68] developed the so-called chirality codes, which represent 

chirality using a fixed set of descriptors. This set offers a mathematical description of the 

stereochemical properties of a molecule and, crucially, distinguishes between enantiomers. 

The group of Caetano and co-workers [69] used the so-called conformation-dependent chirality 

codes (CDCC) to build models for a congeneric set of molecules in order to make predictions 

about the enantioselectivity on a teicoplanin and bianthracene-based CSP using classification 

and regression trees. The CDCC represent chirality by considering all possible combinations 

of 4 atoms in the molecule. For each such combination, the position vectors of the 4 atoms are 

mathematically combined in a specific order that depends on atomic properties. For this 

congeneric series of molecules, the elution sequence could be well predicted using these 

chirality codes, but these descriptors cannot be interpreted from a physicochemical point of 

view, which made it difficult to find reasons why certain molecules were misclassified. 

 

Later on, Del Rio and Gasteiger [70] extended this approach, giving rise to the so-called chiral 

enantiophores. These can be inserted into structure chiral activity relationships (SCAR) to be 

related with the experimental elution sequence of enantiomers in HPLC separations, starting 

from information about the absolute configuration of enantiomers [70]. The idea behind this 

new type of descriptor is to calculate R- and S-like properties of atom combinations which are 

given at different bond distances from the stereogenic centre [70]. First, bond distances 

starting from the chiral centre are determined. An example of this methodology can be 

observed in Figure 7: the atoms next to the stereogenic centre receive number “1”. Atoms that 

are two bindings away from the chiral centre receive number “2”, and so on. Secondly, special 

atom types of the molecule are determined, which are atoms that exert specific interactions 
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with the chiral selector to achieve a chiral separation. These atom types, based on prioritization 

rules, discriminate whether an atom combination has to be used or not in the descriptor 

calculation. A fixed-length vector of 20 descriptors per molecule is obtained, which denotes the 

chirality of the enantiomers. When the retention of a new compound is predicted, it is possible 

to assign the absolute configuration to the elution sequence [70]. 

 

Figure 7. Example of a molecule (a) and its bond distances around the stereogenic centre “C” (b) [70]. 

 

Dervarics et al. [71] developed another type of descriptor, the so-called chirality-sensitive 

flexibility descriptor, where positions of 4 predefined pharmacophores in a predefined order 

are combined. While this class of descriptors received comparatively less attention, their 

physical interpretation is considerably more straightforward than previous work, because 

pharmacophores represent concrete physicochemical properties directly related to 

intermolecular interactions. The descriptor is based on pharmacophore points derived from 

endomorphin- and prostaglandin analogues. It led to QSAR models, which could make good 

predictions about the biological activity of endomorphin- and prostaglandin analogues.  

In 2008, Marrero-Ponce et al. [72] developed new chiral descriptors to distinguish between 

non-chiral and chiral molecules, named “3D-chiral TOMOCOMD-CARDD” (topological 

molecular computer design – computer-aided rational drug design) descriptors. The same 

descriptors were later re-implemented in a more user-friendly cross-platform Java application 
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named QuBiLS-MAS (Quadratic, Bilinear and N-Linear mapS based on graph-theoretic 

electronic-density Matrices and Atomic weightingS) [73]. The TOMOCOMD-CARDD molecular 

descriptors encode the structure of a molecule by means of linear, bilinear and quadratic 

transformations. Therefore they calculate an atom-based molecular vector and the so-called 

non-stochastic and stochastic graph-theoretic electronic-density matrices. The calculations 

lead to several atom- and bond-based TOMOCOMD-CARDD molecular descriptors, which can 

be used to build models. The theory about these descriptors is discussed more in detail in 

reference [74].  

These descriptors do not give information about the 3D structure of the molecule. 

Consequently, a trigonometric 3D-chirality correction factor was introduced in the molecular 

vector to give some stereochemical information. This factor can take three values: 1, 0 and -1 

for R, achiral and S atoms respectively [74]. On 3 QSAR test sets, these molecular descriptors 

proved competitive with previously reported chiral topological indices [74]. 

 

3.2 Multivariate modelling 

As already mentioned, different modelling techniques can be used to model the relationship 

between a dependent variable, for example, retention, and a set of independent variables, the 

molecular descriptors. The purpose of these models is to make predictions about new 

compounds by calculating their molecular descriptors and introducing them into the model.  

Actually two types of models do exist: global and local models. Global models split the data 

set into a training and test set (on the condition that the data set is large enough). The model 

is built with the compounds that belong to the training set, while the model is validated with the 

test set. Local models divide the data set in groups, for example acid, basic and neutral 

compounds and these groups are separately further divided into training and test sets (when 

large enough). The data may also be split based on similarities in these molecular descriptors. 

In general this will give a smaller prediction error than global models [66].  

To build models, regression methods may be necessary and several of these methods do 

exist.  
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MLR is a regression method to build a linear relationship between a dependent variable, e.g. 

retention, and predictor variables, e.g. molecular descriptors. In first instance the variables 

have to be normalized or standardized, after which the MLR model can be build. The 

advantage of such model is that each coefficient linked to a descriptor gives information about 

its importance and influence on the response. The importance of the descriptors can be 

interpreted physicochemically. Therefore MLR is the most applied method when information is 

needed about the separation mechanism [66]. 

On the other hand, modelling techniques like PLS and ANN can be better predictive and handle 

some non-linearity and collinearity between the descriptors, whereas MLR cannot [66].  

 

Before building a model, data pretreatment has to be performed. In first instance the number 

of predictor variables (descriptors) have to be reduced. This can be executed by (1) removing 

the variables that are highly correlated to each other, because they provide the same 

information, and (2) removing the variables that are rather constant, because they do not have 

any influence on the dependent variable. Subsequently the variables should be normalized or 

standardized in order to have a meaningful model. Furthermore the number of descriptors 

included in the model should be low. Therefore variable selection is often combined with the 

modelling approach, e.g. genetic algorithms (GA), stepwise regression,… [61, 75].  

 

In the following paragraphs of this review some modelling approaches are discussed. 

 

Table 3. Some recent modelling approaches. *The retention factor (k) can be defined as the time a 

compound resides on the stationary phase relative to its time in the mobile phase. ** The selectivity (α) 

is a measure of the distance between the maxima of two peaks. A higher selectivity means that the peak 

maxima are further away from each other (α = 1 means that both peaks have the same retention time) 

[76]. In case of chiral separations, α is also called the enantioselectivity. 
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Dataset CSP(1) (separation 

method) 

Approach Descriptors/ 

modelling 

technique 

Predicted 

values 

Year 

(reference) 

130.000 solutes 

from Chirbase 

19 CSP (HPLC) QSAR AP, DP and 

MOE_2D / 

random forest 

(RF) 

α ** and  

log α 

2016 [63] 

171 achiral 

analytes and 97 

racemates 

ADMPC, CDCPC, 

CDMPC 

(HPLC & SFC)  

QSRR 

(LSER) 

Abraham 

descriptors/ 

MLR  

Log k * 2016 [8] 

26 ethanol 

ester 

enantiomers 

CDMPC (HPLC) QSRR Molecular, 

quatum 

mechanical and 

multivariate 

image analysis 

(MIA) descriptors 

/ MLR, PLS, PCR 

Retention 

times 

2017 [75] 

134.000 solutes 

from Chirbase 

41 CSP (HPLC) QSAR RDKit layer 

fingerprints / RF 

α 2018 [77] 

16 racemic 

coumarin 

derivatives 

ADMPC, amylose tris-

(5-chloro-2-

methylphenyl-

carbamate) (HPLC) 

QSPR Descriptors 

corresponding to 

properties of 

substituents on 

phenyl rings / 

MLR 

Log k and 

log α 

2018 [54] 

34 compounds 

(basic drugs 

and pesticides) 

CDCPC (HPLC) QSPR Structural 

variables / DPLS1 

Categorical 

enantio-

resolution 

2018 [78] 

145 achiral 

analytes and 67 

racemates 

Chirobiotic T, TAG and 

V2 (SFC) 

QSRR 

(LSER) 

Abraham 

descriptors/ MLR 

Log k 2019 [79] 
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50 

arylhydantoin 

compounds 

Whelk-O1 (HPLC) QSPR Molecular 

parameters 

derived from 

VolSurf / PLS 

Log k and 

log α 

2020 [80] 

53 chiral 

compounds  

ADMPC, amylose tris-

(5-chloro-2-

methylphenyl-

carbamate), ACMPC 

(HPLC) 

QSPR Structural 

variables / DPLS1 

Categorical 

enantio-

resolution 

2020 [94] 

(1) ACMPC: amylose tris-(3-chloro-5-methylphenylcarbamate)  

In the past, regression methods have been applied to describe relationships between retention 

and molecular descriptors. Examples can be found in Booth et al. [81, 82], Montanari et al. [83] 

and in [69, 84, 85, 86].  

More recently, the random forest (RF) method is also used [63, 77]. If an RF approach is 

applied, several decision trees are created. Depending on the data two types of trees exist: 

when the response is categorical, a classification tree is obtained and when the response is 

continuous, a regression tree. Building trees is based on a binary recursive splitting procedure, 

which divides the data set into two subsets and the process is then repeated for every subset. 

First, a root node is built, containing all objects of the dataset. This root node is split into two 

child nodes, which are more homogeneous than the parent node. The split criterion can be 

any value of any variable in the descriptor set. For every child node the splitting can continue 

until a terminal node is reached, which is sufficiently homogeneous or contains only one 

element. A child node that splits into two other child nodes, is named a parent node [69]. The 

structure of such a tree is illustrated in Figure 8. An RF consists of several decision trees and 

can be created as follows: consider a number of n trees [T1 (X),…, Tn (X)], where x is a vector 

of molecular descriptors. The entire number of trees produces n outputs [𝑌̂1 = T1(X),…, 𝑌̂n = 

Tn(X)], with 𝑌̂n the prediction for a molecule by the nth tree. The outputs of all trees generate 

one final prediction, 𝑌̂. In case of regression trees 𝑌̂ is the average of the individual tree 
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predictions, while in case of classification trees, 𝑌̂ is the class predicted by the majority of trees 

[87]. More information about the RF methodology can be found in reference [87].  

 

Figure 8. Structure of a classification or regression tree. Node 0 is the root node containing all objects. 

Node 2 is a parent node, which is split into two child nodes. Nodes 1, 3 and 4 are terminal nodes. 

 

Sheridan et al. [63] used RF to build quantitative structure activity relationships (QSAR) for the 

prediction of chromatographic enantioselectivity on different polysaccharide and macrocyclic 

antibiotic CSP based on HPLC data from Chirbase. These QSAR models, when built and 

validated properly, allow predicting enantioselectivity based on certain structural features and 

properties, without the need to understand the underlying mechanism. The scope of this model 

was to predict the separation factor α for enantiomers resolved on different CSP, including 

some polysaccharide and macrocyclic antibiotic CSP. The topological descriptors used in this 

model, dubbed AP, DP and MOE_2D, are briefly explained in the next paragraph. 

AP, the Carhart atom pair, is of the form “atomtype 1 – (distance) – atomtype 2”, where “atom 

type” contains element type, number of π-electrons and number of non-hydrogen neighbours, 

and “distance” signifies the distance in bonds between the two atoms [63, 88]. DP is similar to 

AP, but the atomtype is defined differently. The atoms are assigned to one of seven binding 

property classes: cations, anions, neutral hydrogen-bond donors, neutral hydrogen-bond 

acceptors, polar atoms, hydrophobic atoms and other [63, 89]. The authors briefly state that 
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they explored “alternative versions of AP and DP that take stereochemistry into consideration”; 

it is further implied that the atom types are augmented with an R/S and/or chiral/nonchiral 

classification. Molecular Operating Environment_2D (MOE_2D) contains 186 achiral 

molecular descriptors generated by the MOE software [63, 90].  

An RF regression approach was applied, but only for 4 out of 19 CSP an acceptable QSAR 

model could be built. According to the authors, the reason was the lack of good data in 

Chirbase. Some molecules were not tested on different CSP in certain conditions, which 

makes it rather difficult to take conclusions about enantioseparations, because on other CSP 

a separation might be obtained. Another problem was that only a small number of unsuccessful 

experiments is included, which leads to an imbalanced distribution of the data [63, 77]. 

 

In a next study [77], the same authors attempted to improve the predictivity of their RF classifier 

approach by tackling the problem of the imbalanced data distribution. The data was divided 

into 4 classes based on enantioselectivity, i.e. class 1: no or poor separation (1 ≤ α < 1.10); 

class 2: separation is achieved or almost (1.10 ≤ α < 1.20); class 3: excellent separation (1.20 

≤ α < 2.10) and class 4: large separation (α ≥ 2.10). The prediction rates improved, but the 

accuracies seemed to vary considerably within each class. This might still be due to the 

imbalanced class distribution, because classes 1, 2, 3 and 4 contain 10-15, 20-30, 45-55 and 

10-15% of the data sets, respectively. In order to provide balanced data sets and to increase 

the predictive ability, a two-step approach had to be performed: the first step consists of over-

sampling the two minority classes (class 1 and 4) and down-sampling the two majority classes 

(classes 2 and 3). In a second step, the classes were aggregated to two: none-to-moderate 

enantioselectivity (classes 1 and 2) and high enantioselectivity (classes 3 and 4). The results 

now showed a good predictivity for 34 out of 41 CSP. 

In a study by Pisani et al. [54], QSPR models were built by MLR to investigate the 

enantiorecognition mechanism of several racemic 7-[1-alkylpiperidin-3-yl)methoxy]coumarin 

derivatives on an ADMPC CSP in polar organic solvents chromatography (POSC) mode. The 

following descriptors, from which none seems to be chiral, were used in their models: (1) 
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Hammett sigma constant, which accounts for the effect of aromatic substituents in the 

molecule on the electronic interactions, such as dipole-dipole and π-π interactions, with the 

aromatic substituents on the CSP; (2) Molar refractivity and (3) van der Waals volume, which 

both account for steric fitting of the aromatic substituents into the CSP; (4) Hansch lipophilic 

constant for the aromatic substituents and (5) fragment lipophilic value calculated from log kw 

(with kw the retention factor extrapolated to 100% aqueous mobile phase).  

Two models were built with log k as response: one for the first eluted and one for the last eluted 

enantiomers. Considering the first-eluted enantiomer model, the most important descriptor 

seems to be the Hammett sigma constant (positive effect). As a consequence, the retention of 

the first enantiomers might be mostly determined by π-π interactions. Eventually, a model for 

the logarithm of the enantioselectivity (log α) was obtained, containing 2 descriptors: van der 

Waals volume (negative coefficient), indicating the importance of steric properties and an 

indicator variable (positive coefficient), which takes the value 1 for meta-substituted and 0 for 

para-substituted compounds.  

Other groups were also important for hydrogen-bond interactions with the CSP, as seen in the 

docking simulations described above. In addition, the size of the substituents and their position 

(meta position is better than para) are of high importance in the retention of those compounds 

on the ADMPC CSP.  

 

Luo et al. [80] developed QSPR models to predict the retention and separation factor of 50 

arylhydantoin compounds. The descriptors in their PLS regression models were derived from 

the molecular interaction fields (MIF) computed by the GRID software, a computational tool to 

map molecular surfaces of molecules [91, 92]. Specifically, the VolSurf software was used to 

analyze the MIF by adding probes (mostly water and a hydrophobic probe) and computes the 

volume and surface of regions where the interaction energy values are below certain cut-off 

limits. As a result, conformation-dependent parameters are obtained describing the distribution 

of hydrophobic and hydrophilic regions around the molecule [92].  
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Two models were built for the retention factor (log k): one for the more retained enantiomers 

and one for the less retained. The model considering the more retained enantiomers (using 6 

latent variables) showed a leave-one-out cross-validation determination coefficient (𝑞𝐿𝑂𝑂
2 ), a 

parameter for the predictive ability of the model, of 0.884, while the other model (using 7 latent 

variables) showed a 𝑞𝐿𝑂𝑂
2  of 0.885. This means that models built show a good predictive ability 

for retention. When both models were compared, the descriptors important for the hydrophobic 

interactions show an opposite correlation with the retention factor. This could be observed after 

plotting the PLS coefficients against the descriptors.  

Two other PLS models were built for the logarithm of the separation factor (log α): one for the 

entire data set and one after splitting the data in a training set of 38 compounds and a test set 

of the remaining 12 compounds, in order to test the predictive ability. Using 38 latent variables, 

the first model showed a 𝑞𝐿𝑂𝑂
2  of 0.805 and for the second model, a 𝑞𝐿𝑂𝑂

2  of 0.802 was obtained. 

The models appeared to show a good predictive ability and were claimed to predict even the 

elution sequence very well. 

 

Barfeii et al. [75] made a QSRR approach to predict the retention times of 26 ethanol ester 

enantiomers on a CDMPC CSP in HPLC by using different types of descriptors: structural 

descriptors, electronic and quantum mechanical descriptors and multivariate image analysis 

(MIA) descriptors. MIA descriptors are calculated by transforming two-dimensional images of 

a molecular structure into pixels. Since different structures lead to different pixel coordinates, 

MIA can be used to explain the variance in retention times of molecules and can even make a 

difference between two enantiomers. 

In addition, different modelling techniques were investigated to determine which one provides 

the best predictions. The used techniques are MLR, PLS and principal component regression 

(PCR). The best predictions were obtained with PLS in combination with MIA and structural 

descriptors. These models showed a high correlation between the modelled variables and the 

observed retention times, a low root mean square error (RMSE) and a high 𝑞𝐿𝑂𝑂
2 . 
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The previous studies [54, 75, 80] were carried out for structurally related compounds. As a 

consequence information was obtained about the functional groups responsible for the 

enantioseparation, considering certain compounds and its derivatives [78]. Actually these 

models can only predict properly for compounds which are structurally related to the data set 

used to build and validate these models. However, some other research groups have built 

models using a structurally diverse set of molecules and this is discussed in the following part 

of this review. 

A set of 34 structurally unrelated chiral compounds (pesticides and basic drugs) were used by 

Martín-Biosca et al. [78] to construct a model predicting the enantioresolution as a categorical 

variable (RsC) as a function of 58 structural variables, such as chiral topological parameters, 

e.g. C* (counts for atoms or groups bonded to the chiral carbon atom), molecular topological 

parameters (aromatic ring count) and octanol-water partition coefficient (log P). If RsC = 0, no 

baseline separation is obtained and if RsC = 1, baseline separation is observed under the given 

conditions. These categorical enantioresolution levels were established from experimental 

resolution values in RPLC on a CDCPC CSP. The structural variables were linked to the RsC 

using discriminant partial least squares for one categorical response variable (DPLS1). The 

initial model provided full discrimination between separated and non-separated compounds for 

the calibration set, but some misclassifications occurred in the cross-validated output. As a 

consequence the predictive power of this model was poor. The regression coefficients indicate 

also that most of the variables were non-significant, except the variables C*hA (distance 

between chiral carbon atom and aromatic heterocycles), log D (apparent log P at a given pH) 

and molar total charge.  

A model refinement was carried out, eliminating variables one by one until the elimination of 

more variables worsen the quality (predictive power) of the model. Nine descriptors were used 

in this model: two chiral topological parameters (C*X the distance between chiral carbon atom 

and heteroatoms and C*hA), a molecular topological parameter (aromatic ring count Arc) and 

six other molecular descriptors (minimal z length (zmin), molecular surface area (MSA), orbital 
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electronegativity of the chiral carbon atom (OEC*), surface tension (ST), logD and molar total 

charge). The molar total charge contributes (negatively) the most to enantioresolution. As a 

consequence, neutral and low charged compounds show the largest probability of 

enantioresolution. The contribution of the other variables on the enantioseparation is almost 

equivalent. The enantioresolution improved when heteroatoms or aromatic heterocycles 

directly linked to the chiral carbon atom are absent (C*X and C*hA coefficients are negative) 

and when aromatic groups are present in the molecule (Arc coefficient is positive).  

Finally, an explicit model was derived by DPLS1 to anticipate whether a new compound will 

be resolved or not. A model was built with “eRs” as response, which is an indicative value for 

the resolution (Rs). To anticipate resolution, these eRs outputs have to be transformed into 

anticipated RsC (aRsC) outputs. If eRs > 0.5, baseline separation is obtained (aRsC = 1); 0.4 

< eRs < 0.5 means almost baseline separation (aRsC = 0.5); and eRs < 0.4 means poor or no 

enantioseparation (aRsC = 0). This model provided 100% of correct anticipations for a test set 

of 4 compounds when comparing these aRsC values to RsC values from experimental data. 

In a more recent study [93] this group performed a modelling study of RsC with DPLS1 using 

53 structurally unrelated compounds on three amylose-based CSP: ADMPC, amylose tris-(5-

chloro-2-methylphenylcarbamate) and ACMPC. The experiments were carried out in RPLC 

mode and only ADMPC and ACMPC results were used to build the models, because amylose 

tris-(5-chloro-2-methylphenylcarbamate) showed less good separations. Fifty-eight structural 

variables were used to build the models, such as chiral topological parameters, molecular 

topological parameters (aromatic bond count (Abc), ring count (Rc)), the count of atoms or 

groups in the entire molecule and other descriptors (e.g. hydrogen-bonding acceptor (HBA), 

hydrogen-bonding donor (HBD), log P). 

Considering ADMPC, the variables favouring enantioseparation are three chiral topological 

parameters (C*C=O (distance between chiral carbon and a carbonyl group), C*X and C*H). 

The presence of a carbonyl function is important for enantioseparation, because it may act as 

hydrogen-bond acceptor and be important for π-π interactions. Additionally, the absence of 

heteroatoms (C*X) and hydrogen atoms (C*H) linked to the chiral carbon atom, the absence 
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of aliphatic bonds in the molecule (abc and bc variables) and the presence of a ternary amine 

(hydrogen-bond acceptor) favours enantioresolution as well.  

Considering ACMPC, it was observed that the chiral topological parameter C*C=O favours 

enantioresolution, because carbonyl groups are important for hydrogen-bond interactions and 

π-π interactions. The presence of aromatic bonds and fused rings (Abc and frc variable 

respectively) favours also enantioresolution as well as the presence of nitrogen in aromatic 

rings (NA variable), which was opposite to ADMPC. They are important for hydrogen-bond and 

π-π interactions, but on ACMPC, the formation of a Lewis adduct between the aromatic amines 

(Lewis base) and the chlorine atom on the phenylcarbamate (Lewis acid) and/or between the 

aromatic amines and the acidic proton on the carbamate group of the CSP occur also.  

The model constructed for ADMPC has a better predictive ability, but is more complex. It 

contains 7 latent variables, whereas the ACMPC model only 2. 

 

Enantioselective HPLC is the preferred technique to perform chiral separations, but as already 

stated SFC becomes more important nowadays. Consequently, modelling approaches were 

also applied for this technique. 

 

For instance, Khater et al. [8] compared NPLC and SFC on polysaccharide CSP by building 

QSRR and discriminant analysis (DA) models. For the QSRR models, the Abraham descriptors 

were used besides two additional descriptors, named flexibility (F) and globularity (G), which 

are important properties for enantioselective chromatography [94], [95]. Such LSER-derived 

models were already used earlier to study the chiral recognition mechanism on polysaccharide 

and macrocyclic antibiotic CSP, both in HPLC and SFC [67, 94, 96, 97, 98]. The equation can 

be described as follows (with F and G the additional descriptors): 

             log k = c + eE + sS + aA + bB + vV + fF + gG                                           (3) 

 

A difference in interactions between NPLC and SFC was observed. The interactions with π 

and n electrons (e coefficient) and proton donors (a coefficient) were stronger in SFC, whereas 
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the interactions with dipoles (s coefficient) and proton acceptors (b coefficient) were stronger 

in NPLC. This may be caused by the fact that (1) CO2 has more possibilities for polar 

interactions than heptane, the solvent used in the NPLC mobile phases, because CO2 is more 

polarizable. (2) CO2 and alcohol mixtures are heterogeneous (the amount of alcohol present 

in the mobile phase is low), with alcohol molecules clustering around analytes, leading to 

stronger hydrogen-bonding and dipole-dipole interactions with the mobile phase.  

The coefficients related to size (v) and shape (g) have opposite signs in the SFC and NPLC 

models. The retention seems to increase in SFC when the hydrocarbon volume increases 

(positive v coefficient), while this decreased the retention in NPLC [8].  

In a next step the enantioselectivity between SFC and NPLC was compared by performing 

DA, which was applied to help understanding which structural features are involved in the 

resolved racemates. DA on the complete dataset from polysaccharide CSP did not perform 

well, because analytes may enter different interaction sites on the CSP, due to the presence 

of different chiral cavities on these CSP. Therefore, two classes may be defined in two different 

approaches, either co-eluting and (partly) resolved racemates, and fast eluting versus late 

eluting racemates. In a first approach, the latter distinction is made by the authors based on 

the expected retention (estimated from earlier built QSRR models for the same CSP, compared 

with the experimental retention): one set of racemates eluting earlier than expected and those 

eluting later than expected. Differences between experimental and predicted retention indicate 

rather a lack of fit of the model applied. Therefore it seems strange to define classes based on 

this criterion. 

DA analysis allows considering the contributions of the considered descriptors in both SFC 

and NPLC and to compare both in order to relate this to retention and enantioselectivity. 

In a second DA, a distinction was made between separated and non-separated racemates 

within the early or late eluting compounds. This was done to evidence the structural features 

of separated racemates, to study differences appearing between the NPLC and SFC, as well 

as to observe different enantioselective interactions [8]. 
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Khater et al. [79] built LSER models to study the retention and enantiorecognition mechanisms 

in SFC on three macrocyclic antibiotic CSP. Two additional descriptors were added to the five 

standard Abraham descriptors, named D- and D+, to take ionic interactions into account. For 

the three CSP, the same pattern of interaction was observed: positive e, s, a, b and d+ 

coefficients and negative v and d- coefficients. The most important interactions are hydrogen-

bond interactions (a and b coefficients), because of the presence of peptide, phenolic and 

hydroxyl functions on the CSP. Hydrogen-bonding with proton donor analytes was larger on 

the vancomycin phase than on the teicoplanin phases, which means that the retention of these 

analytes might be stronger on a vancomycin CSP. On the other hand, the hydrogen-bonding 

with proton acceptor analytes was lower on the vancomycin CSP. The e -and s coefficients 

were also positive, resulting from π-π interactions (between aromatic groups) and dipole-

dipole interactions, respectively. These interactions were less significant than hydrogen-

bonding, because lower coefficients were obtained. Since the d- coefficient is negative and d+ 

is positive, the anionic acid functions of the CSP can easily interact with the analytes. As a 

consequence, cations are longer retained, whereas anions are not. The d+ coefficient on the 

vancomycin CSP is significantly lower than on the teicoplanin CSP, because vancomycin may 

contain a free amine function. This leads to more repulsion of cations, but since the d- 

coefficient is almost the same as on the other CSP, there is no favourable interaction with 

anions.  

 

4. Conclusions  

Polysaccharide- and macrocyclic antibiotics-based chiral selectors are very popular for chiral 

separations. Many efforts have already been made to elucidate their chiral recognition 

mechanisms. In recent decades, computer models contributed significantly to these efforts. 

Atomistic docking calculations and molecular dynamics simulations as well as empirical 

modelling have been employed to this end, and yielded a number of important insights.  
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Owing to their ease of operation and computational efficiency, molecular docking calculations 

have long been a mainstay for studying the interactions between CSP and enantiomers, and 

are presently still a popular choice for this purpose. However, they generally use energy 

functions that were optimized for protein receptors in an aqueous medium. As a consequence, 

these methods can be expected to be less accurate for polysaccharide and macrocyclic 

antibiotic chiral selectors in mobile phases that typically differ significantly from pure water. 

Moreover, an inherent drawback of docking calculations is that they are traditionally static. 

While recent software allows for flexible treatment of a small selection of receptor side chains, 

this comes at a significant computational cost. Explicit solvent molecular dynamics simulations, 

on the other hand, take the solvent effect and the dynamic process of enantiorecognition during 

chromatographic separations into account. Historically, this was extremely time-consuming, 

but because of computational progress, the use of these methods has become somewhat 

common.  

Besides these atomistic calculations, empirical modelling studies have been performed as well, 

in order to develop models with good predictive abilities. These models should be built with 

chiral descriptors in order to distinguish between enantiomers. However, there is still a lack of 

universally advantageous chiral descriptors. On the one hand, descriptors such as the chirality 

codes and chiral enantiophores have been shown to yield good predictions on a number of 

test sets, but cannot be interpreted from a physicochemical point of view, which makes it 

difficult to understand the underlying mechanisms. The so-called chirality-sensitive flexibility 

descriptor, on the other hand, is a chiral descriptor that can be interpreted physicochemically, 

because it is based on pharmacophore points derived from a molecular structure. 

Unfortunately it is not trivial to apply this type of descriptor to a diverse set of molecules. In 

summary, notwithstanding the existence of some chiral descriptors, research to develop 

suitable descriptors, which allow building suitable models that enable accurate predictions for 

diverse molecules and separation conditions, is therefore still necessary. 
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